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Abstract 

This report describes progress in research on an autonomous robot for planetary exploration 
performed during 1988 at the Robotics Institute, Camegie Mellon University. This report begins 
with an introduction, summary of achievements, and lists of personnel and publications. It also 
includes several papers resulting from this research. 

This research is primarily sponsored by the National Aeronautics and Space Administration. 
Portions of this research are also supported by the National Science Foundation and the Defense 
Advanced Research Projects Agency. 

The research program includes a broad agenda in the development of an autonomous mobile 
robot. In the year covered by this report, we addressed four major topics: 

Configuration: We configured the Ambler (acronym for Autonomous MoBiLe Exploration 
Robot) as a walking robot to overcome the shortcomings exhibited by existing wheeled and 
walking robot mechanisms. The fundamental advantage of the Ambler configuration-which 
has implications for efficiency, mechanism modeling, and control simplicity-is that actuators 
for body support are independent of those for propulsion; a subset of the planar joints propel the 
body, and the vertical actuators support and level the body over terrain. 

Perception: To characterize local scene geometry, we developed several different techniques 
for constructing elevation maps from range images provided by a scanning laser range finder. 
Further, we developed techniques to (1) evaluate elevation map regions as footfall locations, (2) 
match elevation maps, and (3) extract topographic terrain features from elevation maps (peak, 
pit, ridge, valley, etc). 

Planning: We developed innovative gaits that exploit the novel ability of the Ambler to 
recover a trailing leg past a leading leg to achieve productive locomotion and flexibility in 
selection of footfalls. 

System Integration: We developed and partially implemented a centralized task control 
architecture to integrate the perception, planning, and control algorithms. We experimented with 
integrated systems on two separate testbeds. For the first testbed, we designed and fabricated 
one full-scale leg of the proposed walking vehicle. We demonstrated single-leg motion with 
simplified perception, planning, and control modules. Further leg testing has provided results on 
mechanical and structural integrity, leg recovery planning, foot slippage, and power consumption. 
The second testbed is a simple wheeled mobile manipulator. We developed algorithms for 
combining perception, locomotion, and manipulation to control the robot in an indoor laboratory 
to collect simple objects. This work allows us to research complex planning and control issues 
in parallel with developing the Ambler mechanism. 
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Introduction 
This report reviews progress during 1988 at the Robotics Institute, Camegie Mellon University, 
on research sponsored by NASA titled “Autonomous Planetary Rover.” This report begins with 
an overview and a summary of achievements. It then lists the members of the research group 
supported by, or directly related to the contract, and their publications. Finally, it includes four 
detailed papers representative of specific areas of research. 

Overview 
The CMU program to develop an Earth-based prototype of an autonomous planetary rover is 
organized around three teams that are developing the locomotion, perception, and planning 
subsystems (figure 1). A joint task is to inregrate the three subsystems into an experimental 
robot system. We will use this system for evaluating, demonstrating, and validating the concepts 
and technologies developed in the program. 

The technical objectives of the research include the following: 

0 To develop and demonstrate an autonomous Earth-based mobile robot that can survive, 
explore, and sample in rugged, natural terrains analogous to those of Mars. 

0 To provide detailed, local representations and broad, 3-D descriptions of rugged, unknown 
terrain by exploiting diverse sensors and data sources. 

0 To demonstrate robot autonomy through a planning and task control architecture that 
incorporates robot goals, intentions, actions, exceptions, and safeguards. 

One of the major accomplishments of 1988 is the configuration of the legged vehicle sketched 
in figure 2. This unprecedented walking robot provides locomotion over rugged terrain that 
wheeled vehicles can not negotiate easily, and promises to be simpler to control and more 
reliable than other walkers without orthogonal legs. Another major accomplishment of 1988 is 
the construction and utilization of the experimental system hardware shown in figure 3. This 
full-scale testbed not only accelerates the development and testing of perception, planning, and 
control algorithms, but also focuses the integration efforts required to create a coherent robotic 
system from component research results. 

Our overall objectives for the coming year are (1) to develop the hardware for a multi-legged 
walking robot, (2) to continue integrating the locomotion, perception, and planning subsystems, 
and (3) to continue developing the technological basis required for a fully integrated robot system. 
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Accomplishments 
This section describes the key accomplishments of the research in the time period from January 
1988 to December 1988. 

. 

Configuration We configured the Ambler (acronym for Autonomous MoBiLe Exploration 
Robot) as a walking robot to overcome the shortcomings exhibited by existing wheeled and 
walking robot mechanisms. Walking is especially suited for autonomous locomotion as effi- 
ciency is theoretically high, motions are predictable, incremental, and assessable, and motions 
can be used to position and orient body-mounted sampling equipment. We converged on legged 
locomotion since wheeled and tracked mechanisms exhibited limited traversability and often un- 
predictable body motions. We rejected hybrid locomotion and manipulator-assisted mechanisms 
(e.g., “strong arms”) because of planning and control complexity, and the significant cost of 
weight, scale, and power required for the additional mechanisms. 

The fundamental advantage of the Ambler configuration-which has implications for ef- 
ficiency, mechanism modeling, and control simplicity-is that actuators for body support are 
independent of those for propulsion; a subset of the planar joints propel the body, and the ver- 
tical actuators support and level the body over terrain. The Ambler is capable of overlapping 
gaits where rear legs recover past forward supporting legs. These overlapping gaits mean fewer 
foot placements with advantages of reduced demand on perception and planning, and significant 
energy savings due to reduction of the number of foot-terrain interactions. Any functional leg 
can reposition itself to substitute for any failed leg, thus significantly enhancing mechanism 
redundancy. 

& 

Mechanism Model We formulated a functional model of legged locomotion on natural terrain 
for use in model-based control schemes, simulation studies, and design evaluations. The model 
considers closed chains, non-conservative compliance at the foot-soil interface, full non-linear 
dynamic response, and solution techniques for both forward and inverse dynamic calculations. 
The forward dynamics are solvable as singular systems of differential equations. Substitution 
of difference expressions convert the inverse dynamics to a form that is solved by Newton’s 
method. 

Perception using Elevation Maps To characterize local scene geometry, we developed several 
different techniques for transforming range images into elevation maps. The range images are 
acquired by a scanning laser range finder developed by the Environmental Institute of Michigan. 
Simulations showed one of them-the Locus Method-to be extremely robust to sensor noise 
and least sensitive to surface onentation. We demonstrated the method with ERIM images of 
rough terrain acquired at a construction site; the resulting elevation maps accurately capture 
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the scene. We also developed techniques for smoothing and interpolating elevation maps, and 
evaluating elevarion map regions as footfall locations. 

Perception of Terrain Features We identified topographic terrain features (peaks, pits, ridges, 
valleys, etc) to extract from elevation maps for the purpose of terrain typing. These features 
appear to be more relevant for sampling operations and less relevant for navigation and locomo- 
tion. 

Walk Planning We developed innovarive gaits that exploit the novel ability of our proposed 
walking vehicle to recover a trailing leg past a leading leg to achieve productive locomotion 
and flexibility in selection of footfalls. We developed a criterion that ensures stability of a 
six-legged wallrer, even in the event of spontaneous failure of any leg. The resulting gaits 
provide the benefits of periodicity in that they exhibit regular sequence and timing, but allow 
foot placements over generous regions, which is essential in irregular terrain. In addition, they 
should require fewer footfalls per unit advance, thus improving efficiency. 

Architectures We completed initial studies of several possible planning and control archi- 
tectures, including those with explicit goals for both the world state and processing, multiple 
controllers with varying competences plus a mediation mechanism, “reactive” systems, “sub- 
sumption” systems, dynamic hierarchical systems, and blackboard systems. We converged on a 
centralized task control architecture, and have implemented a preliminary version. 

Single Leg Testbed We designed and fabricated a full-scale single-leg testbed. It incorporates 
an actuator to simulate body motion so that propulsion and leg recovery can be accurately studied. 
It includes diffexnt types of terrain so that foot contacts and slippage can be thoroughly evaluated. 
A range sensor mounted above the leg is used to build tenah maps and select footfall areas. 
The leg testing program has provided results on mechanical and structural integrity, leg recovery 
planning, foot slippage, and power consumption. 

Mobile Manipulator Testbed This testbed is based on a modified commercially available 
mobile robot with arm. We have configured it with a video camera mounted in the ceiling of 
lab and h sonar sensors on the robot (one fixed, one rotating, one on wrist of gripper). This 
testbed supports development of our task control architecture, and future experiments with error 
detection and recovery, planning of sensor positioning, and studies of large-delay teleoperation. 

We developed computer programs enabling the mobile manipulator to recognize, locate, 
navigate to, plan paths to, and manipulate a small set of fixed objects in the mobile manipulator 
testbed. We developed these programs to obtain experience With issues such as kegraring 
perception, planning, plan execution, and error detection. They have also raised issues such as 
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interactions between locomotion and manipulation planning, and determining which sensors and 
data resolutions are most useful for various subtasks. 

System Integration We incorporated preliminary integration efforts into configuration and de- 
sign of the proposed robot, as decisions were made about cooperation among electromechanisms, 
sensing, modeling, planning, control, and human interaction. We demonstrated single-leg motion 
with perception, planning, and control modules coordinated by the task control architecture. 

. 
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An Autonomous Rover for Exploring Mars 
John Bares Martial Hebert Takeo Kanade 

Eric Krotkov Tom Mitchel l  Reid S im?ms William W i t t d c e r  

The Robotics Institute 
Carnegie Mellon University 

Plttsburgh, PA 15213 

Abstract 

We present an overview of a comprehensive research procgram, begun in 1987, to design 
and build an autonomous intelligent machine to undertake an exploratory prospecting mission 
on Mars. We are not attempting to satisfy all constraints on the system that would be flown 
to Mars; we are building a prototype and testing it on full-scale Mars-like terrain. The 
research focuses on the central robotics issues of locomotion, perception, planning, control, 
and sample manipulation; the article describes how we confront the issues not faced by 
laboratory robots and explains our system designs. An unprecedented walking robot provides 
locomotion over terrain that wheeled vehicles cannot negotiate easily: its six legs are stacked 
coaxially, permitting each to rotate fully about the body. The perception system constructs 
and matches multiple-resolution maps of rugged terrain and discrete objects using diverse 
sensors: we present a detailed example of how it builds elevation maps from a sequence of 
laser rangefinder views. A centralized planning and control architecture smoothly integrates 
different performauce level planners and provides for flexibility in the detection and handling 
of unexpected contingencies. We present a preliminary discussion of sampling tasks and 
requirements; we propose simple, task-specific tools to acquire samples of Martian materials 
by cutting, coring, scooping, and raking. 

Notice: To appear in Special Issue of Computer Magazine on Autonomous Intelligent Ma- 
chines, June 1989. 
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1 Introduction 

For centuries. people have been fascinated by Mars, one of our nearest planetary neighbors. 
There has been much speculation, in science and science fiction, about what lies on and under 
the surface of the Red Planet. Despite considerable study, our knowledge remains very limited. 
Orbiting vehicles cannot examine internal features, and stationary vehicles, like the thee Soviet 
and two US landers, miss what is over the horizon, atop mountains, and in ravines. 

Active exploration of Mars could answer many questions about tke mitiire aid ongins of our 
solar system. Sending astronauts or remotely controlled vehicles are possibilities, but a manned 
Mars expedition is highly unlikely within the near future, and conventional teleoperation is 
impractical for such a mission because of the long signal time to Mars (up to 45 minutes for a 
round mp at the speed of light). A more promising approach is NASA’s current plan to launch 
a ‘‘Mars rover and sample return” mission in 1996, involving an unmanned prospector and a 
vehicle to f e r n  collected samples to Earth [6]. The broad objectives in exploring Mars are 
to observe and gather materials representative of the planet’s geophysical, meteorological, and 
biological conditions, and to return a variegated selection of samples. The mission could last 
two years, during which the rover might traverse hundreds of kilometers. Since the payload of 
the return vehicle is limited, the mission requires a sophisticated on-site system that can explore, 
assay, evaluate, and select. 

In October 1987 we initiated a research program that addresses the core robotics challenges of 
designing a roving explorer capable of operating with minimal external guidance. This research 
is needed to confront issues not faced by laboratory robots, to identify and formulate the difficult 
problems in autonomous exploration, and to generate the insights, principles, and techniques for 
their solution. We are not attempting to satisfy all constraints on the system that would be flown 
to Mars (e.g., space-qualified processors). Instead, we are building a prototype legged rover 
(called the Ambler’) and testing it on full-scale, Mars-like terrain. 

To undertake a prospecting mission on the Martian surface, we must extend existing robotic 
technology. Because a Mars-roving system is beyond the reach of timely aid from Earth, it must 
exhibit extreme self-reliance. The rover must be able to navigate, explore, and sample within its 
abilities, and to know, moreover, what tasks do and do not lie within its capabilities. Particular 
issues critical to autonomous planetary exploration include robust rough terrain navigation, ca- 
pable locomotion, sample acquisition, perception, self-awareness, task autonomy, safeguarding, 
and system integration. While semi-autonomous and tele-assisted systems may be practical for 
some tasks [11], our research strategy is to smve for full autonomy wherever possible, and to 
have the rover decide when to ask for missing infomation. 

In this article, we present an overview of our research program, focusing on the core areas 
of locomotion, perception, planning, and sampling. Since the program is less than one year old, 

’Ambler is an acronym for Autonomous MoBik Exploration Robot. 
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this article aims to idenrify issues and approaches and to describe work in progress. rather than 
to report results. While our exposition concentrates on a Mars mission, we expect many of the 
technologies to be applicable both to other planetary bodies and to terrestrial concerns such as 
hazardous waste assessment and remediation, ocean floor exploration, and mining. 

2 Exploring Mars 
Our current data on the Martian landscape indicates that an explorer would encounter a wide 
variety of terrain features, including a canyon 4800 lan long by 7 lan deep, a mountain 27 km 
high, and numerous sand dunes, rock fields, and craters. For example, figure 1 illustrates the 
barren, rugged terrain viewed by the Viking 2 lander. 

The following hypothetical scenario illustrates some of the challenges the rover must meet 
in actively exploring such terrain: The rover is instructed to obtain core samples from a rock 
outcrop several kilometers away. Using an area map at 10-meter resolution provided by an 
orbiter, the rover plans a path to the rock face which slarts a small crater that lies on the direct 
route. As it traverses the path, the rover uses cameras and rangefinders to survey the immediate 
region, building a geomemc map that reveals a large boulder field like that in f i p e  1. The 
rover uses this local map to select where to place its feet and how to move its legs in order to 
walk safely through the meter-high boulders. 

A team of Earth-based scientists monitors the rover’s progress in a time frame that lags 
behind the action. In data transmitted as the rover approached the outcrop, they notice a vertical 
formation apparently containing several strata,. The team deems it desirable to obtain a sample 
from each layer, and relays this information to the rover, which charts a course to the indicated 
stratum. 

Close to the rock wall the rover encounters a sandy, rocky incline. The rover judges the 
steepness to be well within its capabilities, and proceeds to climb up the slope. As feet sink in 
sandy areas, attitude control systems reflexively alter leg length to maintain a level body and 
ensure stability. Noting the surface’s visible features, the rover alters its planned trajectory to 
avoid similar areas of potentially treacherous footing. 

Once in position, the perception system corist~cts a high-resolution model that reveals four 
distinctly colored layers. The rover then chooses points centered in each band, orients itself, 
deploys a core drill to extract core sections, and stores them for delivery to the r e m  vehicle. 

This scenario illustrates many of the issues important for a planetary explorer - autonomous 
locomotion and sampling, navigation over a wide range of terrains, multi-sensory perception, 
perception at multiple levels of resolution, both long-range planning and reactive planning for 
contingencies, and awareness of the rover’s own capabilities and limitations. It also points to 
some of the goals for and constraints on a rover design. In the next sections, we summarize 
some of the most important constraints, and describe how locomotion, perception, planning, and 
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. 
sampling systems can satisfy these constraints. 

3 Locomotion 
The rover locomotion system must safely transport the vehicle over vast expanses of the ir- 
regular Martian terrain. Perhaps the most important design criteria for the locomotion system 
is traversability: it must be able to navigate over extremely rugged terrain. Specifically, it is 
desirable that the rover be capable of traversing a one meter step, negotiating a 60 per cent 
slope, and maintaining an average velocity of approximately 1 km/day2. Autonomous operation 
places additional traversability constraints, namely, that the locomotor be capable of incremental 
three-dimensional motions that are predictable and reversible. The ability to move incrementally 
in any direction greatly simplifies path planning in rugged terrain since the mechanism places 
few constraints on the planners. Predictable motion, knowing that the locomotor will move as 
commanded, is the basis for safe and reliable traversal of difficult terrain. Finally, the ability 
to reverse any motion sequence at any time is important to all vehicles that venture into the 
unknown. 

Energy efficiency poses an additional design constraint, because total on-board power gen- 
eration is expected to be less than 1 kw. As the dominant energy consumer the locomotion 
mechanism must be extremely efficient. Another design consideration is that the locomotion 
mechanism must provide a stable platform both for sensors and sample acquisition tools. 

These design criteria admit a wide variety of possible locomotion candidates, including 
mechanisms that roll, walk, combine rolling and walking, or perform so-called hybrid locomotion 
[12]. Rolling machines have wheels (or tracks) in continuous support contact with the terrain 
and propel themselves by generating @action forces parallel to the terrain surface. They are the 
predominant form of locomotion for most manned vehicles and unmanned robots. As a result, 
their control and perfoxmance trade-offs are well-understood. Walkers suspend themselves over 
the terrain on discrete contact points and maintain principally vertical contact forces throughout 
propulsion; this allows more tractable models of terrain interaction than are possible for wheels. 
In addition, walking mechanisms isolate the robot’s body from the underlying terrain and can 
propel the body along a smooth trajectory independent of surface irregularities. 

M e r  comparing these candidates, we selected legged locomotion because of its superior 
rough terrain traversability characteristics, theoretical efficiency, and its ability to keep sensors 
and sampling equipment steady and stable. A thorough trade-off analysis of locomotion mech- 
anisms with respect to these consaaints appears in [l]. 

The Ambler design [l] consists of six legs stacked coaxially at their shoulder joints (see 
figures 2.3). Each leg is mounted at a different elevation on the central axis of the body and 

*These specifications, although somewhat arbitrary, reflect plausible assumptions about the mission and the scale 
of objects on the Martian surface. 
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can rotate fully around the body. Each leg (figure 4) consists of two revolute joints (shoulder 
and elbow) that move in a horizontal plane to position the leg, and a prismatic joint at the end 
of the elbow link that effects a vertical “telescoping” motion to extend or retract the foot. Thus. 
the locomotor has 18 degrees of freedom. The planar “reach” (combined length of shoulder and 
elbow links) of a leg is 2.5 m and vemcal “stroke” (telescopic distance) is 1 m. The average 
overall height of the Ambler is approximately 3.5 m, and its nominal width is approximately 3 
m. With these dimensions, the Ambler can step over obstacles 1 m high while maintaining a 
level body trajectory - we know of no other robot that can perfom nearly as well. 

The Ambler body, a 1 m diameter cylinder situated below the leg stack, will contain equip- 
ment for power generation, computing, sample analysis, and scientific instrumentation. Sample 
acquisition tools may be mounted beside or under the body (see section 6, ff.). Communication 
equipment (not shown in figure 3) can be mounted either above the leg stack or in the body. Per- 
ception sensors, which currently include a laser rangefhder and color cameras, will be mounted 
above the leg stack where they have larger fields of view; other high-resolution sensors may be 
placed under the body or directly on the legs. 

This configuration possesses a number of benefits. First, the long legs isolate the body and 
sensors from terrain roughness. This is an advantage for perception; since the body remains level 
and at the same altitude, sensor observations are aligned with each other over time much more 
than they would be on a rolling vehicle. Second, decoupling the vemcal and horizontal joints 
simplifies walk planning and motion control by reducing complex six-dimensional problems to 
smaller ones. Third, sampling tools under the body have a clear view of and close proximity 
to the terrain that they must access, and can be positioned and oriented by moving the body, 
reducing the number of degrees of freedom required for sampling equipment. 

In operation, the Ambler will walk over rugged terrain much as one poles a raft floating on 
water over a rough lake bottom. The six vemcal actuators in the Ambler’s legs level the body 
over terrain, while the planar joints propel the body. As the body advances, one leg at a time 
moves ahead of the walker, much like the pole is replaced ahead of the raft. A unique result 
of the stacked leg configuration is that gaits where rear legs recover past forward supporting 
legs are possible. Figure 5 shows an example of such an overlapping gait. Overlapping gaits 
require fewer foot placements, saving energy because of fewer terrain deformations, and reducing 
demands on perception and planning. 

While recovering one leg, the five other legs support the body. The stability of the stance 
can be maximized by maintaining the center of gravity inside a “conservative support polygon.” 
Inside this region, the vehicle remains stable even if one (and possibly more) of the legs ceases 
to support the vehicle, either due to failure or slippage. 

Experience with existing walking mechanisms [5] suggests that they are difficult to coordinate 
due to their complexity, suffer large energy losses due to actuator conflict, and can be unreliable 
upon failure of one or more legs. We designed the Ambler to overcome each of these three 

. 
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problems. 
Unlike other walkers, the Ambler's actuator groups for body support and propulsion are 

orthogonal: a subset of the planar joints propel the body, while the vemcal actuators support 
and level the body. The Ambler can level itself without propelling and propel without leveling, 
exhibiting no power coupling between the two motions. A subset of the planar Joints is sufficient 
to propel the body in position ( x y )  and heading i), because the planar mechanism (12 links) 
is a determinate system. Any three of the twelve shoulder and elbow actuators can be used 
to propel the body, with the remaining nine planar actuators deciutcned or back-driven3. Since 
the planar mechanism is determinate (three actuators provide three degrees of body freedom), 
actuator conflict and the ensuing energy losses are eliminated. Planar dynamic response can also 
be completely modeled for use in motion control of the mechanism. A one-dimensional terrain 
imeraction model suffices for solution of the vertical foot forces, Equilibrium, stability margin, 
forces, and energy cost are readily computable from these mechanism and terrain models, which 
among other benefits, permits torque and power minimization during propulsion. 

The Ambler locomotor configuration is a dramatic improvement in reliability over conven- 
tional waking mechanisms. Since the legs are stacked above the body and can rotate by 2;: 
about their shoulder joints, any leg can operate in any body sector. Thus, any functional leg 
can reposition itself to substitute for any failed leg, and three legs would have to fail to cause 
immobilization. 

In summary, the Ambler is an unprecedented wallcing mechanism that satisfies the constraints 
of traversabfity, efficiency, and stability imposed by the rugged Martian surface and mission 
requirements. Its unique design avoids problems faced by other walkers, and qualifies it for the 
aggressive exploration task it faces. 

" 

4 Perception 

. 

The Ambler needs timely and detailed perception to plan effective locomotive and sampling 
strategies, monitor their execution, and safeguard against hazards such as tipover or environ- 
mental change. These capabilities require appropriate and efficient data representations for terrain 
(e.g., geometry, soil type) and objects (e.g., size, shape). The perception system's task is to build 
and maintain these representations - of the terrain, its properties, and discrete objects - which 
we call terrain maps. 

While orbiters and Earth-based controllers can assist the mission, they cannot provide the 
perceptual basis for navigation or sampling tasks. Maps produced by orbiters will not have 
sufficient resolution for sampling or mobility in very rough terrain - even the highest resolutions 
currently envisioned will yield maps with only meter-scale resolution. Due to communication 

3However, combinations of three elbow actuators cannot provide body heading. Furthermore, mechanism sin- 
gularities exkt for which certain shoulder and elbow actuators requh infinite torques. 
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delay, Earth-based interpretation of sensor data would drastically limit the rover's speed even 
over the most benign terrain. Thus, the Ambler itself must have the sensing and perception 
capabilities to build the detailed terrain maps and object descriptions needed for local motion 
and sampling. 

Perceiving and mapping rugged, outdoor terrain poses significant challenges. Current ma- 
chine perception techniques can be applied with some success to man-made, structured, indoor 
scenes. Unlike industrial systems, the rover will have little need to recognize or describe regular 
geometric shapes, and cannot capitalize on the powerful constraints (e.g., symmetry, smooth- 
ness, constant illumination) presently utilized to perceive worlds consisting of blocks and origami 
pieces. New techniques must be developed to construct maps of the natural, unstructured, outdoor 
environment of Mars. 

Building and maintaining those maps raises several issues: 1) representation of data at 
different levels of resolution; 2) construction of maps and descriptions from different sensors; 
and 3) efficient use of the maps. The following three sections describe how the perception 

. 

* 

system addresses these issues. 

4.1 Representations 

The perception system must provide an environmental representation that is appropriate for a 
wide variety of tasks, each with different requirements. For example, locomotion and sampling 
require detailed, local representations, while navigation and mission planning demand broad, 
global descriptions. To accommodate these diverse needs in a uniform fashion we have selected 
a hierarchical representation scheme which describes terrain and objects at varying levels of 
resolution. 

According to the needs of different tasks, it is natural (but not necessary) that the resolutions 
differ by orders of magnitude: pebble-size units on the order of 1 cm may be appropriate for 
performing fine sampling operations; foot-size units on the order of 10 cm might be well-suited 
for locomotion control; vehicle-size units on the order of 1 m may be natural for navigation and 
short-range path planning. Figure 7 illustrates this idea for three specific levels of resolution. 
The first two rows of the figure suggest how a map (called the global map because it is created 
from orbiter images) at 10 m scale could be used to plan a 1 krn route (perhaps a day's journey). 
The third row of the figure shows how the global map relates to a local map at 1 m scale. The 
fourth row suggests first how the 1 m scale map could be used to plan a 10 m path, and then 
how a 10 cm scale map (see inset) could be used to select footfall locations within a 1 m region. 

In addition to making available information at appropriate scales, the multi-resolution rep- 
resentation affords several computational advantages. For functions applicable only at certain 
resolutions it reduces the amount of data that must be accessed. Functions applicable at all 
resolutions may be evaluated more efficiently by processing all resolution levels in a come to 
fine manner, or by processing only those levels containing useful infoxmarion. 

- 
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At each level of resolution we describe the environment in two ways: on a geometric grid, 
and as object descriptions. Together these comprise a terrain map at one scale. 

We define an elevarion map on a regular grid. Each &grid square records information about 
the terrain in that area, for instance, its elevation above a reference “ground” plane (see fig- 
ure 8). Other terrain attributes include the following: the uncertainty of the estimated elevation; 
roughness; slope; labels indicating whether the terrain is unknown (has never been observed) 
or occluded (currently not observed because it lies in a shadow cast by another object); miner- 
alogical composition; and a measure of traversability derived from siope, roughness, and other 
properties. 

Object descriptions include the size, shape, and location of particular objects such as a 
boulder, symbolic descriptions of terrain such as hill, valley, saddle, and ridge that may be 
Eseful for identifying promising sample sites; paths the vehicle has followed; locations that have 
been sampled; and viewpoints from which observations have been made. 

“ 

4.2 Constructing Terrain Maps 
Constructing texrain maps requires sensing and interpretation, ranging from low-level data col- 
lection to high-level scene modeling. This section first focuses on the lowest level of abstraction: 
sensors and signals. Next it describes an intermediate level of abstraction, concentrating on local 
surface geomeay and local material properties, and then sketches the highest level of objects 
and semantic interpretations. 

Sensors 

Single-sensor, single-algorithm systems are severely limited in their ability to resolve ambigu- 
ities, to identify spurious information, and to detect errors or failure. These shortcomings are 
not a product of the sensors or algorithms employed, they are an unavoidable consequence of 
attempting to make global decisions based on incomplete and underconstrained information. One 
way to circumvent the limitations of a single sensor is to use multiple sensors. By combining 
(“fusing”) information from many different sources, it is possible to reduce the uncertainty and 
ambiguiry inherent in making decisions based on only a single information source. We will 
equip the Ambler with a battery of different sensors (even using the vehicle itself as a sensor) 
to collect multi-spectral data and to allow sensor fusion. 

Currently, our primary sensor is a scanning laser rangefmder that measures both reflectance 
and range. It has two disadvantages: its moving parts are vulnerable to failure; and since the 
scanner actively transmits signals, it requires more power than do passive imaging systems. 
However, we find that its virtues - directly measuring the environment’s three-dimensional 
structure - easily outweigh its defects; compared to reconstruczion of depth from multiple 
two-dimensional images (e.g., stereo, motion), it imposes a far smaller computational burden, 
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and eliminates the errors that inevitably arise in solving the correspondence problem. We have 
developed an explicit probabilistic model of the uncertainty on this sensor’s readings, according 
to which the measured range errors are normally dismbuted with standard deviation proportional 
to the square of measured range. 

In the near future we will also use a pair of color cameras in order to determine material 
properties from color and texture, for long-range viewing, and for stereo viewing to back up the 
rangefinder and to aid mission controllers on Earth. In later stages of our research we plan to 
incorporate proximity sensors that detect imminent collisions with obstacles, an inertial reference 
sensor, inclinometers, tactile sensors on sampling tools, and other imaging devices. 

Interpreting the raw sensor measurements cannot begin until the devices are calibrated and 
their signals corrected. Calibration involves relating the sensor measurements to a known quantity 
(e.g., the dimensions of a leg or the reflectance of a reference pattern) or to each other (e.g., 
the geomemc relationship of cameras to rangefinder). Periodically, using well-hown techniques 
[8], the rover must recalibrate the devices as they bounce and shake out of alignment. Correction 
involves detecting and eliminating corrupt signals (e.g., images acquired with the camera pointed 
at the sun), and atering noisy signals. 

. 

Surface geometry 

Once calibrated and corrected, the perception system can interpret sensor signals at higher levels 
of abstraction. To give an example of this important operation, we will consider the interpretation 
of rangefinder signals in terms of local surface geometry (interested readers can find details in 
[3]). This involves creating an elevation map from a range image, computing its geomemc 
attributes, matching it to another elevation map, and merging the two maps to form a composite 
map. 

A simple method to create the elevation map is to refer each range measurement to a reference 
,grid representing the ground plane by applying a coordinate transformation determined during 
calibration. This approach is limited since it cannot compute the elevation estimate of a point 
that is not a grid point without resampling. We have developed an algorithm overcomes this 
difficulty by first computing in the image space the locations where rays transmitted by the sensor 
strike the terrain, and then referring the intersection points and an estimate of their uncertainty 
to a reference grid of arbitrary resolution. 

We have implemented algorithms to compute geometric attributes of the surface defined by 
the elevation map, including surface normal, principal surface curvatures, shadowed areas, and 
elevation uncertainty. Slope and roughness can be calculated by identifjmg the best planar fit to 
the surface: slope can be determined from the plane’s parameters; roughness can be derived by 
examining the fit residual. We are investigating techniques to estimate surface roughness that 
compute the fractal dimension of the set of surface points. 

So far, the characterization of surface geometry derives from a single range image acquired at 

. 
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. 
one fixed location. Merging elevation maps from successive viewpoints allows the construction of 
a composite map that can be more complete, by including previously occluded regions, and more 
accurate, by decreasing the uncertainty of past measurements. Further, determining the geometric 
relationship between the viewpoints provides a measure of the vehicle displacement which can 
be used to supplement position measurements from dead reckoning and hemal references. We 
have developed a two-stage algorithm to determine the correspondence between two elevation 
maps. The first stage matches a sparse set of geometric features extracted from the two maps 
using hypothesis prediction and verification; its output is the estimated rigid transformation T 
relating the two sets of features. The second stage takes T as an initial estimate and refines it by 
gradient descent, iteratively minimizing an e m r  functional defined over all the data points in the 
two maps. Once we know T, we can apply it to merge maps; figure 9 illustrates an example of 
a composite elevation map constructed by merging four rangefinder views of the rugged terrain 
at a consauction site. In addition to coEputing ccxposite elevztion maps, we ran zpply the 
algorithm to the problem of registering local maps with global maps (figure 7). 

Material properties 

The mobility of the Ambler will be determined not only by the geometry of surfaces but also 
by their material properties. To characterize a surface as sand, rock, volcanic ash, or talus is a 
formidable task, requiring a variety of information sources. Although we have not yet formulated 
solutions to this problem, we have identified three approaches. First, the perception system can 
apply statistical pattern recognition and sensor fusion techniques to classify materials based on 
complementary infoxmation such as color, visual texture, and surface roughness measures derived 
from range and color images. Second, it might apply reasoning techniques to infer a lower bound 
for particle cohesion from a measured surface’s maximum slope and some geological knowledge. 
Third, the perception system need not be limited to passively interpreting data; it can activeZy 
use the Ambler vehicle itself as a sensor to determine soil cohesion and friction parameters either 
directly, by measuring leg joint torques while walking, or indirectly, by comparing the soil in its 
footprints to nearby soil. 

Object identification 

Interpreting sensor signals at the highest level of abstraction, in terms of objects and their 
semantics, is a very important capability. For example, ices condensing during the cold Martian 
night may evaporate before scientists on Earth can notice them and direct the rover to collect 
them - they must be discovered and analyzed in situ. To do this, we hope to build special- 
purpose object identification routines. To extend these to the point where they can 1) idenufy 
“unusual” or “interesting” objects, perhaps on the basis of color, texture, or context, and 2) 
provide the basis for autonomous decisions to collect a sample, is well beyond the state of the 
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art. Studying these problems of semantic object identification have high pnonty on our future 
research agenda. 

4.3 Using Terrain Maps 
Once maps and descriptions of the world have been constructed, the perception system must 
support and facilitate their use. It will provide multiple access mechanisms to its data repre- 
sentations, including at least the following: efficiently answering a single query, perhaps by 
evaluating a spatial hash function; receiving an interrupt, for instance a request for particular 
data; and continuous output streaming, to be used in actuator control loops. 

The terrain maps will be used for a variety of tasks. For locomotion, the Ambler will access 
elevation maps to select footfall locations that can both accommodate its feet and support its mass. 
It will also compute intersections between elevation maps and planned aajectones to ensure that 
its body and legs avoid obstacles. For navigation, the Ambler will use the elevation maps to 
plan paths and mutes. Further, it will use the elevation maps to localize itself by matching them 
to global maps, and combine this information with position estimates from dead reckoning and 
hemal references. For sample acquisition, the Ambler will use both elevation maps and object 
descriptions: the former to identify promising sampling sites based on topographic features; the 
latter to identify objects to be sampled, determine approach directions, and select control regimes 
(e.g., force, position). 

To summarize, the perception system provides detailed, local representations and broad, 
three-dimensional descriptions of rugged terrain and inegular objects, represented as eleva- 
tion maps and discrete objects. It exploits diverse sensors and data sources to construct the 
multiple-resolution terrain maps the Ambler needs to to plan and act in the unfamiliar Martian 
environment. 

5 Planning and Control 
An autonomous planetary explorer needs to exhibit a wide range of behaviors. In particular, it 
must be able to navigate over a wide variety of terrain features, and to acquire many different 
types of samples. In addition, it must be able to detect and recover from errors in its plans, 
and must monitor for contingencies arising both externally (e.g., dust stonns) and internally (e.g. 
excessive power usage). The robot should also choose plans that are “desirable,” e.g., those that 
have a low d e p e  of risk, high degree of reliability, and high benefit to the overall mission. 

Our goal is to construct a general robot planning and control architecture that facilitates the 
achievement of these tasks. Consideration of the tasks indicates that the architecture should 
address three major issues: 1) integration of different planners, each potentially using differ- 
ent representations and algorithms, 2) flexibility in handling contingencies, plan failures, and 
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unexpected situations, and 3) self-awareness of the robot’s own capabilities and limitations. 
The architecture we are developing addresses each of these issues. Integration of different 

planners will be facilitated by using a standardized declarative language to communicate between 
modules. Flexibility is achieved through the use of a centralized control module that will handle 
intempts from environmental monitors and the scheduling of resources. The control module will 
also maintain dependency information between planning modules to facilitate error recovery and 
explanation. Issues of self-awareness will be handled using decision modules to perform such 
tasks zs reasoning about available resources, the expected reliability and expense of a proposed 
plan, and the expected benefit and time criticality of achieving a given goal. 

The core of the architecture is a centralized control module (see figure 10). The control 
module receives queries and goal requests from planning modules and routes them to be han- 
dled by applicable query or planning modules. Queries, which are used to access internal and 
external sensing data, are routed in a kst-in, fist-served nanner, and tile answer to the q~ery 
is routed back to the requesting module. Goal requests are kept on a prioritized goal agenda, 
and are handled as the necessary resources become available. Prioritization, handled by decision 
modules, is based on the type of goal and on the current external and internal environment of 
the robot. 

This general architecture can be used to control a wide variety of specific hierarchies of 
planning modules. For example, figure 11 illustrates part of our current design for a locomotion 
planner that integrates body and leg motions. Each box in figure 11 is a planning module, and 
the arrows represent the control and data flow handled by the architecture. The walk planner 
takes a three-dimensional ribbon and outputs a series of straight-line subgoals to be traversed. 
The footfall-selection-area planner (FSAP) and the footfall-location-optimization planner (FLOP) 
together plan where to place a foot, and the leg-recovery planner (LRP) decides how to move the 
leg from its current position to achieve the foot-placement goal while avoiding obstacles such 
as rocks and other legs. In parallel, the body-trajectory planner (BTP) decides how to move the 
body along the heading given by the walk planner. Its output is combined with the LW’s to 
coordinate movement of all joints, which is then sent to the walking-motion-manager to control 
the actuators. 

Besides queries and goal requests, planning modules can also issue constraints, which are 
treated as advice that other modules can use to restrict their search for acceptable plans. For 
example, the BTP needs to constrain the FLOP, since body position helps detemine the limits 
on the extension of the recovering leg (see figure 11). Also, a sampling planner might issue the 
constraint “avoid region X,” which would then be used by the walk planner to eliminate region 
X from consideration for possible footfall placements. 

When a planning module fails to generate an acceptable plan, it issues a failure that de- 
scribes why the goal cannot be achieved. Decision modules are used to analyze the failures 
and to recommend appropriate action, such as reinvoking the planner with additional constraints, 
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reinvoking a higher level planner, or using another planner that can achieve the same goal. For 
example, if the FLOP fails to find an acceptable area to place the foot within a given region, 
the architecture would reinvoke the walk planner to produce a new footfall area, adding the 
constraint to avoid that region. 

A central feature of the architecture is the distributed nature of its problem solving. Planning, 
query, and decision modules can all run as separate processes and even on separate machines. 
Using ideas developed in the NavLab project [lo], communication between modules will be 
transparent to the module writer, so the system can be easily reconfipd.  The control module 
will use its knowledge of available computational and physical resources to schedule and allocate 
the achievement of different goals. One departure from the centralized control scheme, taken 
for efficiency reasons, is that query modules will have direct, high-bandwidth connections to the 
local terrain map and other perceptual information. 

Although our aim is autonomous behavior, we realize that the Ambler will never have enough 
knowledge to cope with all possible situations. It is important for humans to be able to intervene 
and teleoperate the Ambler when the situation warrants. To this end, we are designing the control 
architecture to accept human input at any level of the planning hierarchy. We want to enable 
humans to override the goals and constraints produced by planning modules, re-prioritize the 
goal agenda, and override the responses of query and decision modules. These facilities will 
also be very beneficial during our research, since we will easily be able to substitute human 
input for as-yet-unwritten modules. 

A major advantage of our proposed architecture is that it enables us to experiment easily with 
different control schemes. The openness of the architecture does not enforce a rigid discipline for 
constructing a robot, but does offer many tools for facilitating the constxuction and integration 
of a planetary explorer. The following three sections expand on how this architecture addresses 
the issues raised above of integration, flexibility, and self-awareness. 

5.1 Integration 
To achieve even basic competence as a planetary explorer, the Ambler will have to perform a 
wide variety of tasks. For example, to achieve the goal “walk over to Rock31 and check for 
ice on its undersurface,” the robot needs the ability to plan a route to Rock3 1, plan and execute 
individual steps, including leg and body movements, position itself over the rock, grasp the rock, 
sense the presence of ice, etc. 

For practical reasons of efficiency and ease of implementation, the planners for these different 
tasks need different algorithms and representations. For example, mission planning tasks typically 
need to be done before many relevant environmental features become known. Such tasks can be 
handled using largely qualitative, symbolic planning techniques (e.g., [7]). On the other hand, 
planning individual footfalls is a very consaained problem, and is more naturally solved using 
geometric and numeric algorithms. 

- 
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Since each of the planning modules incorporate different representations and different as- 
sumptions about the world, a major problem is enabling the different planners to communicate 
effectively with one another. We plan to handle this integration problem by desi_ping a stan- 
dardized, declarative language for describing goals and perceptual queries. For example, the 
goal input to the leg-recovery planner consists of the desired (X,Y,Z) point to place the foot. the 
time interval during which it should be achieved, and constraints on the maximum and minimum 
allowable change to body height. The communication language is being developed by analyzing 
the control and data flow for the preliminary specifications of the Aixblei x ~ d  fclr the exhtkg 
NavLab autonomous vehicle [lo]. 

The use of a standard language enables implementors to agree on the interfaces between 
modules before actually implementing the modules themselves. Not only does this enable im- 
plementors to treat other modules as “black boxes,” but it also enables modules to be substituted 
for one another in a transparent manner. When the control architecture receives a request to 
achieve a task (subgoal or query), it wiU have tables describing which modules are applicable 
for the given task. Modules for the same task can be easily substituted by changing the mapping 
tables. In addition, if more than one module can handle a given task, decision modules will 
be used to choose which one to use in the current context based on their range of expertise, 
computational and physical resource requirements, and expected reliability. 

Another important integration issue is the handling of multiple tasks. The control architecture 
will maintain a list of active goals and a prioritized agenda of pending goals, and will monitor 
through perception when to start and stop attending to its goals. Prioritization of goals will be 
done dynamically, based on a cost/benefit analysis taking into account the current environment 
and past actions. For example, while in general it may be more beneficial to obtain sedimentary 
rather than volcanic samples, if a volcanic sample is nearer the Ambler might prefer to get it 
first, especially if it already has several sedimentary samples. 

Since our architecture enables several tasks to be executed concurrently, it needs to deal 
with conflicts over resources. For example, the plans for moving the body and recovering leg 
both constrain vertical movement of the body. Our architecture will support two methods for 
satisfymg potentially conflicting constraints. One method is to have the planners describe the 
allowable constraints and have a separate module resolve the constraints. This method is used 
by the joint-movement planner in figure 11). Alternatively, one module can produce constraints 
that are used by another module to restrict its actions, the method used by the body-trajectory 
planner to limit the FLOP’S choice footfall location based on the planned trajectory of the body. 

5.2 Flexibility 

If the world were certain, static and benign, a robot could function with the simple control 
scheme of pre-planning and blindly executing the resulting plan. Unfortunately, Mars, and the 
world in general, is uncertain, dynamic and potentially hostile. To provide autonomous behavior, 
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a robot must react flexibly to changes in its environment. Such changes may indicate that a plan 
is failing (anticipated uncertainty), in which case it must be revised, or they may indicate that 
some unexpected situation has arisen (unanticipated uncertainty), in which case it may be more 
important to achieve a different set of goals. 

While the robot must attend to its sensors to detect the necessary environmental changes, 
practically, the robot cannot perceive all the infomation present at all times. Instead, it must 
focus on those aspects deemed to be most important. To this end, the control architecture will 
provide the facility to construct monitors that check on specific conditions. A monitor will 
spec@ the condition it is monitoring, the time interval over which the monitoring is to take 
place, the frequency to monitor, its priority for resolving resource conflicts, and what to do if 
the condition is found to be true. 

A crucial problem is when and what aspects need to be monitored. We view this as a 
problem of reducing uncertainty in a plan. As time passes and actions occur, uncertainty in the 
robot’s predicted state of the world grows, until at some point a threshold is crossed where the 
uncertainty exceeds the risk the robot is willing to take that its actions will succeed. This is the 
point where a perceptual request should be inserted into the plan, where the type of uncertainty 
indicates what to focus on. For example, suppose the robot plans several footfalls in advance 
based on its current terrain map, As footfalls are executed, the positional uncertainty of the robot 
grows. The robot can minimize sensing operations by checking the footfall area only when the 
region of positional uncertainty grows large enough to overlap with an object in the terrain map. 

Noticing unexpected situations and detecting plan errors is only part of the problem. As 
important is handling the situation in an intelligent manner. For unexpected situations, th is  
means deciding whether to pursue other goals and, if so, how to smoothly suspend activities 
for the currently active goals. For plan errors, this means repairing the plan without necessarily 
replanning h m  scratch. 

The robot wil l  handle both these contingent situations by reasoning about dependencies 
recorded when plans are constructed. Simply, the architecture will maintain dependency links 
between the inputs and outputs of a module, indicating that the decision to produce the outputs 
was influenced by the content of the inputs. To suspend active goals, the architecture would 
trace fomard through the dependencies to find a l l  subgoals, monitors, and perceptual queries 
that must be suspended as well. 

When plan errors arise, the architecture will trace back through the dependencies to find the 
modules that depended on infoxmation that is no longer valid. The robot would then suspend the 
part of the plan that depends on the faulty information and replan from that point on 191. This 
increases the performance of the robot since it does not have to replan from scratch every time 
an error is detected - it can reuse unaffected portions of plans, namely, those portions that do 
not depend on the faulty information. 

Further uses of dependency information include creating explanations for human observers 
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that describe why a particular decision was made, and in doing explanation-based learning [4] 
to aid the robot in avoiding similar errors in the future. Although these areas are outside the 
current scope of the project, the availability of suitable dependency information increases the 
ease with which they can be incorporated into future versions of our architecture. 

5.3 Self-Awareness 
Robots on Earth can be closely monitored to prevent them from performing useless or dangerous 
actions. For a planetary exploration robot, however, the very long signal propagztion time forces 
responsibility upon the robot for choosing acceptable actions. To make intelligent decisions about 
what actions to take and what goals to pursue, the robot needs knowledge of its own resources, 
capabilities, and limitations in order to reason about the costs and benefits relative to other 
eppormnities. 

Costs can be measured in terms of resources used (e.g., power and time), reliability of the 
plan (risk), and uncertainty. Benefits of achieving a goal can be detennined both by the goal’s 
a priori desirability and by its marginal utility, since the benefits of achieving some goals (e.g., 
remeving volcanic rocks) decrease the more they are achieved. 

Decision modules will be implemented to perform cosmenefit analyses both for achieving a 
goal and for using a given planning modules to construct a plan for the goal. Given the goal of 
remeving an object, for example, a decision module might estimate the cost of achieving it as 
function of the object’s expected weight, its distance from the Ambler, and the expected terrain 
type separating the Ambler and the object. The goal’s benefits might be computed as a function 
of the object’s type, the number of Like objects already retrieved, and possibly the likelihood of 
finding other valuable objects in its vicinity. Although initially we wi l l  use numeric measures of 
costs and benefits, we are also considering the use of qualitative preference measures in situations 
where accurate numeric measures cannot be obtained. 

An additional cost that must be considered is the planning time itself. For time-critical 
operations, the robot must stop planning and execute the actions before it is too late. Thus, the 
robot needs to be aware of the deadlines for its goals, the expected time to execute its plans, and 
the expected time and reliability of its planning modules [2]. We are currently pursuing designs 
that enable the robot to reason in an efficient way about its own computational resources. 

Reasoning about uncertainty in the robot’s actions and its model of the world is also quite 
important. In the previous section we argued that explicit models of the uncertainty in the robot’s 
actions could be used to reduce the amount of perception needed. Models of uncertainty can 
also be used in choosing amongst different plans to achieve the same goal. A plan with a high 
degree of uncertainty might be less desirable than one that is longer but more certain to succeed. 

Reasoning about uncertainty can also be used to determine when to “phone home” for help. 
If the degree of uncertainty in a plan and its expected cost are both very high, the robot has 
good reason to reduce the uncertainty before venturing out on a high-risk mission. If the robot 
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cannot use its perception to reduce that uncertainty sufficiently, it should request assistance from 
Earth in deciding whether to proceed with the plan. 

In sum, explicitly representing and reasoning about the robot’s capabilities and limitations 
should help it to act autonomously in an intelligent manner, avoiding undue risk and maximizing 
limited resources. 

. 

6 Sampling 
The primary scientific purpose of the Mars mission is to acquire samples of the Martian terrain, 
to analyze them, and to retun selected samples to Earth: NASA hopes to acquire some 200 
samples over a two year mission, an order of magnitude more than the Viking lander acquired 
during the two years it was functional. Scientists are interested in acquiring samples from a wide 
variety of materials, ranging from unweathered igneous rocks, sediments, and drift material, to 
soil, salts, and ices. The samples must be chosen with great care, however, since only about 
5-10 kg is expected to be retuned to Earth. A typical sample set might consist of several soil 
cores 1-2 m long, multiple rock cores 1-2 cm long, 5-10 soil scoops, about 100 fragments of 
unweathered pebble-sized rock (0.2-2 cm), and 20 fragments of weathered rock larger than 2 

The sampling task for the Ambler differs in several ways from those most commonly ad- 
dressed in robotics manipulation research. First, the samples will consist of granular material 
and inegularly shaped solids. Thus, few of the models, tactics, or effectors used by current 
robots to manipulate discrete, regular objects will be applicable. Second, most acquisition of 
samples on Mars will involve forceful interaction with the Martian suface (e.g., cutting, coring, 
and scooping) in an unstable, unpredictable environment. In contrast, most robotics research 
is involved with contact (grasping) motions in a stable (if not predictable) world. Third, the 
sampling operations run the gamut from coarse-grained (e.g., digging a pit to expose sub-surface 
features) to he-grained (e.g., chipping off a small piece of ice). Most current algorithms are 
geared for tasks at a single level of detail. 

These three aspects of the task greatly impact the mechanical design of the sampling equip- 
ment. Our current thinking is to design a number of simple, task-specific tools rather than one 
or two complex, general-purpose mechanisms. For example, rather than a six degree of freedom 
robot  am^ and hand, we could equip the Ambler with a 2 m soil drill, a 2 cm rock drill, a 
scooper, and a gripper. 

Using multiple tools has a number of distinct advantages. First, a task-specific mechanism 
is likely to be simpler than a general manipulator. This implies fewer parts to break down 
and a simpler control algorithm. Second, by analyzing types of interactions a tool will likely 

cm. 

. 
4We are concentrating our efforts only on the problem of collecting samples. The tasks of sample analysis, 

preservation, and packaging are outside the scope of OUT research. 
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encounter in performing its particular task, we can design the mechanism to survive unpredictable 
but expected contingencies, such as hitting a rock while coring a soil sample. 

A third advantage of multiple tools is that the range of tasks from coarse- to he-grained can 
be accommodated using tools scaled to meet different requirements. For example, a soil-scooper 
needs to be larger and less powerful, while a rock-corer needs to be smaller and more powerful. 
Tools can be sized and mounted to take advantage of their power, stability, and perceptual 
requirements. This enables a tool’s work envelope, rigidity, and payload to be maximized while 
minimizing weight and power requirements. A fourth advantage is reliability. If a general- 
purpose six degree of freedom manipulator fails, then all sampling tasks reliant on it cannot take 
place; if a task-specific tool fails, then only one sampling task cannot be performed. 

A disadvantage of using multiple tools is that the combination might not be flexible enough 
to handle all possible tasks. An important area for research is to identify the range of devices 
needed to perform the various tasks expected to be encountered during the mission. We are also 
exploring alternatives for mounting the tools. One possibility is to mount them on the body and 
rotate the body to position and orient the tools, much like the turret tool-heads used in current 
CNC machines. Another, not mutually exclusive, alternative is to mount some tools on the 
Ambler’s legs to increase stability and visibility of the sample surface (see figure 6).  

Although sampling research will focus primarily on tooling configuration issues, the unique 
nature of the task also impacts perception and planning. Perceiving and modeling in three 
dimensions is complicated by the irregular nature of small-scale Martian terrain features (pebbles 
and surface textures). A related difficulty is predicting and modeling the destructive effects of 
tools on the environment - chipping off fragments from rocks changes their shape, digging pits 
adds new features to the terrain. 

Another difficulty is that the manipulation actions can obscure perception of the sample. 
For example, scooping soil to dig a pit might stir up enough dust to hide the surface from a 
camera We need to consider special types and positions of sensors to overcome such problems. 
A special case is soil coring, where traditional sensors are useless since they cannot penetrate 
the soil. In this case, we might use non-imaging techniques, such as measuring soil resistivity 
from drill torque, to gain some understanding of the sub-surface features. 

On the planning side, the sampling tasks needed by the rover are all characterized by being 
highly unpredictable. One cannot predict when a soil corer will strike an underground rock, 
how a rock will fragment when struck, or where the pieces will land. Thus, even more so 
than for navigation, planning for sampling tasks must be highly reactive. In particular, control 
for functions in which sensor infomation is limited (e.g., clearing, digging, and rummaging) 
must be force- or impedance-based rather than position-based, and must react immediately to 
unexpected changes in force to prevent damage to the tools. 

Planning techniques must also be developed to provide for a stable sampling platform. The 
legs and body must be positioned to maximize the leverage applied by the tools and to prevent 
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the forces exerted from causing the Ambler to slip or topple. 
Planners can exploit the coarse-to-fine range of available tools for planning sampling tasks. 

It is likely that hierarchical strategies will be more flexible than strategies that rely on a single 
manipulator technique. For example, if the mission is to remeve an underground sample from a 
given region, one could imagine drilling a sample core to gain some understanding of the region 
before attempting to dig a pit from which to obtain a sample from the side of the pit wall. 

As should be evident from the above discussions, we currently have more questions than 
answers about how to perform sampling tasks on Mars. Our philosophy for these problems, and 
for the mission in general, is to expose the difficulties and constraints inherent in the task and to 
use that understanding to drive the design of our mechanical, perceptual, and planning systems. 

/. 

7 Current Status 

Although simulations are often useful abstractions of the problems an autonomous robot will 
face, they are never as revealing as the actual mechanism. Our philosophy is to embed our 
ideas in working mechanisms that operate in natural environments. While we build the six- 
legged vehicle described in this article, we are testing our locomotion, perception, planning, and 
sampling ideas on two testbeds, both of which are currently operational. 

The first testbed is a one-legged version of the Ambler. Its purpose is to begin integrating 
the component technologies into a single complete but simplified system that can demonstrate 
single-leg “walking” using a few frames of range data, simple walk planning, and simple error 
recovery. A full-scale leg has been built and mounted on a carriage that aavels along rails on 
the ceiling to simulate body motion. A scanning laser rangefhder is mounted above the leg 
to provide data for building terrain maps. Under the testbed is a large “sandbox” containing 
different soil types and obstacles. A rudimentary version of the planning and control architecture, 
running on SUN workstations, enables the leg to lift-off, recover, and land at a chosen position. 
We are also using this testbed to study foot-terrain interactions (e.g., foot slippage and sinkage, 
power consumption during lift and footfall), and plan to add mock-ups of the other five legs to 
practice weaving during leg recovery. 

The other testbed is a commercially available robot (a Heathkit Hero 2000) that we are using 
to explore ideas for combining navigation, sample collection, and teleoperation in an indoor 
environment. The Hero mechanism is wheeled and it has an arm and gripper. For perception, 
it has a base sonar and a rotating head sonar, and we have added an additional sonar on its 
wrist. In addition, we have mounted a camera in the ceiling of our lab to give the Hero a global 
overhead view. Currently, the Hero plans paths to objects using its vision system and, once 
in the vicinity of an object, uses its sonars to locate and grasp the object. The Hero currently 
picks up and deposits plastic cups and cans. Soon we expect it to remeve printer output and to 
schedule the achievement of multiple, conflicting goals. 

- 

. 
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8 Summary 
Constraints inherent in the task of autonomously exploring another planet have driven our des ip  
of the locomotion, perception, and planning systems for a Mars rover. In particular, the task 
demands a system that efficiently and reliably navigates over rough terrain, robustly perceives 
rugged terrain and irregularly shaped objects, and exhibits extreme self-reliance in achieving a 
multitude of tasks. We have incorporated all of these constraints into our design for the Ambler. 

We designed the proposed six-legged waiidng machine to be very efficici~: h the type nf 
rocky and sandy terrain expected on the Martian surface. The use of six legs enhances reliability 
by adding redundancy to the design. Unlike previous walkers, the Ambler should be fairly easy 
to control due to the decision to decouple vertical (foot) movements from horizontal (elbow and 
shoulder) movements. For sampling tasks, these constraints indicate the use of many simple, 
specialized tools, which are more robust and simpler to operate than a general ann and hand 
mechanism. 

To achieve robust perception we employ multiple sensors, each geared to particular sets 
of tasks: visual data from an orbiter may be used (if available) to plan global routes; laser 
rangefinder data will be used to plan steps and local paths; cameras mounted on the Ambler’s 
body will be used for selecting and guiding the acquisition of samples. To achieve efficient 
perception that is appropriate for different tasks we employ multiple-resolution representations: 
elevation maps describing the shape and properties of the terrain surfaces; complex object de- 
scriptions for discrete objects. 

For planning and control, the need for self-reliance and the uncertain nature of the Martian 
terrain argue for a centralized control architecture to integrate new capabilities easily and to 
handle contingencies flexibly. The proposed architecture enables low-level procedural planners 
to be combined with high-level symbolic planners, using a common symbolic language of goals, 
queries, and constraints. Handling contingencies and plan failures is facilitated by maintaining 
a dynamically prioritized goal agenda and by recording dependencies between modules. 

The most important requirement of a planetary rover is a high degree of autonomy. This is due 
both to the long signal time from Earth to Mars, and to limited bandwidth communication which 
makes it difficult for Earth-based observers to completely understand the robot’s environment. 
The issue of autonomy is only partly addressed by having robust on-board perception and high 
levels of competence in the planners - the rover must also be aware of its own capabilities 
and limitations. The rover must be able to reason about the uncertainty in its models of the 
environment and the reliability of its effectors in planning a course of action that is Within 
acceptable levels of risk. The rover must take its physical and computational resources into 
consideration in scheduling tasks. And, ultimately, the robot must know when it does not have 
enough howledge and when it needs to get assistance from Earth. 

By pursuing these issues of locomotion, perception, planning, and sampling in the context of 
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a robot that operates on another planet, we hope to gain a greater understanding of the problems 
and solutions necessary to take intelligent machines to Mars and beyond. 
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Figure 5: Overlapping Gait 
As the walker advances, the recovering leg (drawn darker) overlaps the two right side supporting 
legs (dashed line). Depending on a leg’s location on the central stack, some weaving around 
supporting legs may be necessary for it to recover past forward legs. 
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Figure 6: Leg-Mounted Sampling Tool 
This is a somewhat fanciful artist’s conception. The leg should be vertical, and the “m” holding 
the drill should be less articulated. 
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Figure 9: Example of Elevation Map 
This figure is an example of a composite elevation map constructed by merging four rangehder 
views of the rugged terrain at a construction site. The grid size is 10 cm. 
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1. Introduction 

Space programs are targeting manned exploration of Mars; however, manned missions elude financial 
and technical feasibility. Mobile, perceptive robots hold the prospect to explore Mars on behalf of man. 
The challenge motivates a robot with unprecedented ability for the autonomous, self-reliant exploration of 
rugged, barren terrains. This paper presents the configuration for such a robot. 

A robot configuration is the comprehensive functional design from which detailed design and 
production of a prototype robot system follow. Configuration is the critical milestone of successful robot 
development. The configuration and eventually the design of an autonomous robot are driven by the 
functional specification of the task. Functional specifications art generally implied by the task statement or 
derived from subjective consideration of the end solution requirements. Functional specifications evolve 
to satisfy the needs of configuration and design. 

The scope of configuration of an autonomous exploring robot is comprehensive, incorporating 
mechanisms, computing and control hardware, and processes for perception, planning and action. The 
process of perception acquires, interprets and models sensor data about the environment. Planning 
operates on this model to prescribe robot motions toward accomplishing goals. With a consideration for 
robot self-preservation, the action process implements planned motions. 

In this paper we discuss configuration of a robot, the  AMBLER^, for autonomous exploration of the 
rugged terrain of Mars. We first give an overview of the AMBLER, with attention to mechanisms and 
processes for perception, planning and action. The AMBLER configuration is then justified from the task 
functional Specifications and competing needs of interacting subsystems. 

. 
c 

AMBLER is an acronym for Autonomous, MoBiLe, Exploration Robot, meaning o w  that moves about from place to 
place at an easy walk with a sauntering gait 
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2. Mars Exploration 
Mars has more Earth-like features than any other body in the solar system. Mars is geologically 

interesting, featuring volcanos, canyons and ~ I Y  river beds. It provides the oppomity to learn how 
geology is affected by pressure, gravity and temperature conditions different than on Earth. An 
exploration robot can collect various samples and perform on-site analysis of environmentally sensitive 
materials (e.g., ice). It can also document geology, including lava flows, rock, @ h r s  and river valleys. 

Mars Rover /Sqle  Return (MRSR)fll is a NASA mission to fly a mobile robat to Mars to conduct 
scientific and sampling activities. After a 2-year traversal of several hundred kilomettrs tk robot will f h d  
and dock with another spaacraft that will shuttle the samples back to Earth. severe h h t i o n s  on the 
rslmple payload that can k returned to Earth require a sophisticated, Mars-based exploration, sample 
evaluation, selection and pervation program. The total: quantity of samples expected to be =turned is 
only 10's of kgs. All the mtellectual and technicat rtsources of the Eaxth s scientific community can be 
brought to bear on the rttumed samples. The samples (e.g., pebbles, rock chips, cores, Wings)  will 
provide dkect infomation on the composition of the planet's crust, mantle and COR, and on geologic and 
ciimatic history. The broad objectives of MRSR arc thus to gather as mu& scimtific information as 
possible and to lletum to Earth 8x1 intdligcntly-dccted sampling of marwiais. 

The half-hour sw delay in m d a i p  telemetry from Earth to Mars precludes teleoperaad (human- 
removed) control due to the extremely slow progress that would result and forces robot autonomy. 
Autonomous operation implies that the robot is able to operate in isolation without failure, damage or 
entrapment with only occasional input &om a human ovusccr. Exploration differs significantly from 
opations in conditions that an known or predictable. By natue, exploration defies prcplanning, at least 
It the grain of the local envir-t, so a robot's success rclies heavily u its abilities to perceive its 

hpofiant consideration that drives the configuration of an autonomous Mars exploration robot. Any 
dcbilitatingcircumstan#~inmissicmfdwc. 

rtate and surrounding envirOrnnmt, plan and execfltc actions and survive. r clf-rchnce is the single most 

Fig-1: Surface of Mars 

With mass restricted to hundreds of kilograms and power restricted to hundreds of watts, a Mars 
exploration robot is challenged to mccessfully navigate on terrain - typified by the dense boulder field 
with interspersed dunes shown in Fig-1 -at an approximate rate of 1 km/day for several years. Boulders, 
a c v ~ s c s  and ledges of one-meter s d e  are cxpectcd m the three-dimensional, discontinuous Martian 
terrain, as arc very low bearing strength soils. Traversal of such terrains quires capabilities of modeling, 
planning and locomotion that go beyond those which succeed in two-dimensional environments such as a 
smooth factory floor. Fuithermore, unlike typical industrial settings, Mars exploration has many 
Ccmpcting objectives including power efficiency, stab- and rate of prognss. 7 7 ~  need for cxmme self- 
xcliiance is complicated by rugged terrains; for many locom~tim mechanisms, traversal of difficult terrain 
compromises safety and self-reliance. Environmental factors such 3s low temperahucs, winds and dust 

- 

- 

impose additional constraints. 
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Barren terrains, whether ternstrial or planetary, arc all rugged natural surfaces devoid of structured 
content like buildings or trees; they arc vast landscapes of rock, soil and ice. The surface of Mars is 
dominated by diffuse, granular media and irregularly shaped, solid natural forms. In comparison, the 
surface of the Earth's Moon is quite smooth and fir. The absence of vegetation, man-made structures 
and animate objects on barren terrahs significantly influences autonomous robots because, on one hand, 
they need not cope with the variety of associated impediments to sensing and motion; on the other hand, a 
robot cannot rely on easily identified features like trees or fixed structures as landmarks for navigation 
aids. Of interest are terrain attributes such as geomeay and material mechanics that directly influence 

A robot configuration is the functional design that derives from the specification of the robot's 
environment and purpose. For the barren, rugged terrains of Mars, a configuration is forced to address 
three-dimensional, irregular morphology and mechanical terrain behaviai. The FUI~OSC of exploration 
rcquircs that the configuration incorporate mechanisms to traverse rugged temain, make observations and 
gather samples. The inability to preplan tasks and trajectories requires that the motions of an exploratory 
mechanism decouple to simple, assessable (easy to measure) actions. These motion primitives must be 
power efficient and power expenditure must be modeled, costed and controlled by the configuration. 
Autonomy and self-reliance require that primitive motion and interaction models be robust and tractable. 
The robot must have abilitics for sclfdiagnosis, contingency action and safeguards beyond any precedent. 

. 

. locomotion, sampling and self-presemation. 

3. AMBLER: An Autonomous Robot for Mars Exploration 
This section overviews the AMBLER, a robot configuration to autonomously explore the rugged 

surface of Mars. The AMBLER [Fig-21, a six-legged walking robot, perceives and models terrain, and 
plans and executes tasks and motions; it is unmanned, selfcontained and power efficient. A predominant 
philosophy underlying the AMBLER configuration and its operation is extreme self-reliance, manifested 
primarily by highly predictable mechanisms and conservatism at all levels of planning. 

The AMBLER uses a laser range scanner to gather local terrain data. This data from varied view 
perspectives, sensor types, resolutions and times is processed to generate an elevation map, an effective 
representation for rugged terrah. The elevation map is a grid plane that is conceptually fixed to the terrain 
and is indexed or "scrolled" ahead occasionally as the vehicle moves through the terrain. Each grid point 
contains data such as terrain elevation and compliance. Grid points may also contain derived attributes 
such as terrain slope and mature. Multiple images arc merged onto the elevation map, accounting for 
error in robot motion, sensor noise and incomplete sensor coverage. Data confidence increases as new 
data supports prior readings. 

Continuously updated robot state models include world position, position with respect to the elevation 
map, joint positions and sensor orientations. Some state representations such as world position have an 
associated uncertainty. Given the local tcmain map, robot state models and other on- and offboard inputs, 
AMBLER planning decides what actions will further progress. 

r 
Several different planners formulate behavior of the AMs= from navigation on the Martian surface to 

selecting foot placements and sampling motions. Conceptually, one set of planners determines "task" 
plans; the second set plans "motion sequences'' that forward the desired task intentions. Throughout 
planning, competing objectives must be considered including energy expenditure, stability and rate of 
progress. In a simple example, a task planner first denotes a locomotion task of travel to a distant terrain 
point. Several levels of motion planners then determine a sequence of body, leg and foot motions that wiU 
attain the desired god while adhering to a given stability margin and maximum energy level. Motion 
sequences (trajectories) resulting from motion planning are backsolved to motion primitives and queued 
for execution by the mechanism. Conditions expected to occur in the course of execution arc anticipated 
by planning for use in monitoring the acceptability of the resulting AMBLER actions. It is necessary that 
planners preclude tipover at all costs, as it is unlikely that fragile sensors and antennas could survive the 
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impact of such an event. Om method of providing this safeguard is to plan SO that no action will be taken 
wirhout somc caution for thc unexpected. 

The AMs= locomotion mechanism has six legs to isolate the body from and to efficiently 
propel the body. Each leg has two revolute motions m the horizontal plane that position the leg over the 
terrain, and a vertical telescoping motion that extends the foot into contact on the ground. Each AMs- 
leg is mounted at a diffennt elevation on the central axis of the body and can rotate fully around the body. 
The vertical links in &e AMsLER's legs level the body over terrain in the manner of a raft floating on water 
over a rough lake bottom. Propulsion of the level body, which requires only several of the planar revolute 
motions, is analogous to poling the raft. As legs reach the limit of their stroke, they axe Icplaccd ahead of 
the walker much like tk pole is replaced ahead of the raft. 

Fig-2: The AMBLER 

While the AMBLER can vary its height and width to compact, its average overall height, drom ground to 
the top of the leg stack, is -3.5 m and normal walking width is -3 m. The AMBLER can cross 1 m 
obstacles while maintaining a lev4 body attitude. The laser range sensor used to build the terrain elevation 
map is mounted above the leg stack for a good view of teain. Communication equipment and scientific 
sensors are atso mounted above the leg stack. 

The AMBLER body, a 1 m dia. cylinder situated below the leg stack, contains power generation, 
computation, sampling equipment and scientific instrumentation. Scientific observation and sampling 
needs exploit the benefits of positioning and reaction that the body motions can provide: Since the body 
can hover to station over desired sampling locations, only light, short sampling motions (e.g., dri l ls ,  small 
grasping implements) need to be appcndcd to the underside of the body. Doing so nduces the number of 
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sampling motions and the associated necds for volume, payload, power and control. The nsult, including 
body motion, is a manipulator chain from large-to-small and from coarse-to-fme motions. High resolution 
terrain sensors are configured under the body in a down-looking manner in suppofi of underbody 
sampling equipment. Because of their large size and long reach, legs might also be used to house and 
position additional sampling and scientific equipment. For instance, due to the long length of a 1 m con 
drill assembly, mounting the mcchamsm ' on the vertical axis of a leg appears beneficial. 

' The AMBLER computing system operates processes for perception, planning, motion control, 
communication and health monitoring. 32-bit processors configured on a common backplane are the core 
of the computing system. The computing system configuration includes the ability to remotely program, 
debug and test algorithms. Where response to asynchronous extend events is critical to the survival of 
the robot, the c o n f i i o n  is st rcamh * d to enable timely throughput. 

. 

AMBLER sofcwarc is objcct-ccntend, that is, software objects (sections of code that perform a specific 
task) arc viewed as functional units that receive and send data/commands directly from/to other objects. 
The computing system permits human interaction with most objects. Ultimately, human *ut will be in 
the form of occasional task objectives, though during development of the prototype system, continuous 
teleoperation and direct motion control (e.g., servo-level) arc likely. 

4 . Description of the AMBLER Configuration 

A configuration is a complete fimctional &sign that directly generates a detailed design and ultimately a 
physical robot. Cdiguration of a Mars explorer must thoroughly consider the elements of perception, 
planning, action, computation and infrastruchm. The objective is to work from functional specifications 
to configure elements that arc compatible, complementary and contribute to a composite functional 
capability. A configuration must take full advantage of elemental technologies and at times go beyond to 
forge the technologies into a needed functionality or performance. The key to a successful configuration is 
proliferation of inttrclemental complements. 

This section presents the content of major AMBLER subsystems including local terrain perception, 
motion planning and locomotion mechanism. The scope of this paper precludes the treatment of other 
subsystems including intermediate and globd perception, task planning, motion control, sckncc/samplhg, 
computing hardwart, health monitoring, communication and infrastructure. 

4.1. Local Terrain Perception 
Detailed, timely information about terrain geometry and composition is generated by the AMBLER 

explorer. Local perception builds and maintains descriptions of tenain surrounding the robot in support of 
planning for locomotion, self-preservation and autonomous sampling. Geometric information about the 
terrain (e.g., surface location, slope, curvature) is used by the AMBLER to generate motion plans. This 
section discusses the terrain representation and how it is built from range data 

Terrain Sensing 

measures geometry, which is the principal content of local terrain models. Passive vision ranging 
techniques (e.g., stereo), though power efficient, arc ineffective in segregating the weathered geological 
materials of Mars. Soils, sands and geologies of Mars appear rather the same to a camera. This blandness 
&empowers traditionat techniques of passive vision that rely on distinctions of color or intensity. h such 
barren terrains, passive vision must consider second order cues like interpretation of shadows and spectral 
surface reflection. 

c Range sensors arc the preferred sensing mode for building local terrain models. Range data directly 

The AMBLER will employ a two-axis laser range scanner. The approximate field of view is a 60' cone 
emanating from the scanner. Assumhg a 3.5 m mounting height (top of AMBLER leg stack) and steep 
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downlooking angle, resolution for the hrst 5 m is expected to be 3-5 cm and decrease to -30 cm at the 
scanning limit of 15-20 m. Thcse resolutions and relative ranges fulfill the various modeling requirements 
for locomotion and science/sampling. In addition to range, the scanner provides a surface reflectance 
reading that can be an mdicator of surfact material. 

Laser range scanners requh power for ranging and for scanning. In the interest of power economy, a 
possible class of range sensor might forego the luxury of two-axis scanning, using robot progress or 
appendage motions to accumulate complete terrain coverage. For example, a conical shroud of range data 
might be acquind with a single, narrow-beam laser ranger and a single rotary scan motion. Deployed high 
on a mast, such a sensor would cut out a dense locus of range data on a wave front that moves with the 
robot, dy ing  on accuxnulati0n techniques to build and retain a full tc& model. 

Terrain Representation 
"he foremost content of a terrain representation is the accurate geometric model of the highly irregular 

surfaces common to rugged terrains. W e  geometry is the single most important feature, other terrain 
attributes including material type and compliance arc required in the representation for assessing robot- 
environment interaction. 

The terrain model must clearly identify anas that haven't been sensed because they are out of scanning 
range (unknown) or shadowed by a terrain feature (occluded). Knowledge that a Egion is hidden fkom or 
beyond sensor view is important to a robot that explores. The representation must merge sensor images 
from different vehicle positions and view pcrspcctivts to enhance quality and infU unirnown . .  and . occluded 
areas. Finally, costly data transforms to change refkrencc frame or data fonn should be IIIlIIlITIlztd. 

Surface patch rcpnsentationS have successfully modeled the "uneven" terrains navigated by the CMU 
NavLab121. Surface patch rrprestntations model a d a c e  as a mosaic of many smooth connected axeas or 
patches - the density and size of which depends on locd surface roughness. "he process of building a 
surface patch representation requirts image segmentation, calculation of surface normals and curnature, 
and finally, fitting of planes or quadrics. An immediate drawback is that computational requirements 
increase significantly with terrain roughness (many more approximating surfaces are required). 
Fmhermore, the walking locomotion planner requircs terrain elevation to select foot placements - another 
approxbnation is tkefore nquired to backsolve elevation from a patch rcpnscntation. 

Cell Models 
Cell representations subdivide a three-dimensional region into large numbers of small cells, and sensed 

attributes such as range and color arc accumulated into these cells with attention to noise and uncertainty. 
Cell models can be efficiently post-processed to derive geometric features such as slope and curvature. A 
3-D all model subdivides the local world into equally-sized cubes; cubes on or below the terrain surface 
arc labeled "occupied, and cubes above the tcrrain are labeled "empty". Other terrain attributes such as 
color and compliance can also be tagged to a cube. Cubes an sometimes termed "buckets" because their 
data representations conventionally hold any number of artributes and comsponding uncertainty values. 
An elevation map is a 2.5-D all model where each grid point is a bucket containing, at minimum, an 
elevation value. 

The cell model is a uniform means of consolidating data &om various types, resolutions and view 
perspectives of sensors over temporal and motion histories. Cells can accumulate information about 
terrain color, geometry and material attributes Ute friction angles, density and cohesion, all of which art 
important to robots in rugged terrain. Because of their inherent ability to model irregular surfaces, cell 
representations are well suited to represent the detail of amorphous shapes typical of the rugged Mars 
teK&. 

Cell models recursively subdivide volumes to arbitrarily fine grain size. At any resolution, data can be 
accumulated into or accessed &om the model. By averaging data values or interpolating between data 
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points, resolution in any region of a cell model can be increased or decreased to suit the needs of planning. 
This h a t e  ability of cell models to collapse from coarse resolution to fine resolution in a local region 
supports, in a consistent context, the diverse grains of planning from traveling a valley to grasping a 
pebble. 

CcU models are ideal representations for casting notions of emptiness, occupan~~ and invisibility. In 
rugged terrains where boulders may occlude important portions of a scene, information about what is 
visible generates the dual information of what is invisible. Cells with unknown or occluded values are 
flagged to enable straightforward detection by planners. 

If a majority of terrain points have only a single elevation value, as is the case with barren terrains, 
2.5-D cell models are more computa t idy  efficient than 3-D cell representations. A 2.5-D cell model is 
especially amenable to planning AMBLER locomotion as selection of foot placements reduces to planar 
searetics *mdtr ccnstrahts such as maximum elevation and slope. Similar benefits of the 2.5-D 
representation are predicted for planning sampling motions. A drawback of the 2.5-D representation is 
that it is difficult to represent terrain points with multiple elevations (e.g., vertical and overhanging 
surfaces). It is, however, possible to detect and flag the occurrence of such areas in an elevation map. 

2.5-D elevation maps can either be generated from 3-D cell models by tracing up cube columns and 
concatenating columns when the tenah surface is nached[3] or constructed dircctly from range data. To 
minimize data manipulation we chose the second approach, that is, to build a 2.5-D cell model directly 
from sensed range values. The result is that raw sensor data is processed minimally to build the elevation 
mapa 

Local Terrain Map (LTM) 
The AMBLER elevation map, ternred the Local Terrain Map Fig-31, is approximately 30 x 30 m and is 

divided into sections of high and low resolution: -5 cm resolution for the first 5 m and -30 cm resolution . 
for the next 25 m. The Local Terrain Map (LTM) is conceptually tied to a terrain position in the vehicle 
locale; the AMBLER moves with respect to the LTM. The LTM is occasionally moved ahead (scrolled) 
and re-correlated to the vehicle position to eliminate accumulated error due to vehicle locomotion enor. 
Map grid points contain various types of infomation including elevation, uncertainty, compliance, color, 
derived terrain featurcs such as slope and curvature, and flags denoting unknown and occluded areas. As 
each new frame of range datais taken it ismerged tothe LTM. 

The local terrain map is "site-fixed" to a terrain position in the locale of the vehicle. To build a quality 
representation of the local terrain, the map must merge several range images. Then is a choice to fu the 
map either to the vehicle (e.g., body-centered) or to a point on the tenain (site-fixed). Implementing the 
former means that new images arc directly merged to the map without transformation, but the map must be 
advanced continuously as the body moves. The latter requires that each new image is transformed to the 
site coordinates of the map and merged and that the map is sQolled forward only occasionally. 

Based on relative sizes between sensor footprint (scan area) and the LTM, each new range image 
contributes roughly 20% new information to the map. Therefore, keeping the body-centered map currcnt 
(Le., moving it with the body) would rtquke approximately 5 times as many transformation computations 

movement, a data transform in either case could mean 3 translations and 3 rotations for each grid element. 
Beyond computational efficiency, a site-fixed map also seem appropriate when the AMBLER is to map a 

extended period of mapping activity and small vehicle motions. 

- -  

as the alternative of transforming the new image back to the site coordinate frame. Depending on vehicle 

prospective sampling area; a single site-fmed terrain map could accurately hold sensory data for an , 
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Fig-3: h l  Terrain Map[*] 

When merging a new range image to the map, the match can be performed "blindly" by incorporating 
only dead-reckoning (internal motion assessment) infonnation from the locomotor. Depending on the 
mckonine; accuracy of the locomotor - the AMBER is @ckd to be very accwatc - blind matching could 
introduce e m r  into the LTM. If so, a high-resolution matching algorithm (e.g., iconic) can be used, at the 
expense of signifkant computational burden, to determine a nearly exact match. In either case, the LTM 
and ament vehicle positicm can be occasionally recorrelated by scrolling the map. 

Because of its scale relative to the terrain features expected on Mars, it is possible that the AMBLER 
locomotor will be able to traverse a majority of the intended terrain with straight-line body motion. 
Additional benefits accrue for special instances when the robot moves in rectilinear motion consistent with 
the axes of the site-fixed LTM, the costly bdegree-of-freedom @OF) transformation llequircd to merge a 
*W image is d u a d  to a fast 1-DOF transform. 

4.2. Motion Planning 
Robotic exploration of the barren unknown terrain of Mars defies detailed prcplanning, so an 

exploration robot must generate its own motion commands, execute them and respond to the resulting 
c o ~ ~ s e q u ~ ~ c c s .  Planning in rugged tenain represents a s@cant departure h m  robot pl- to date by 
rtquiring rigorous consideration of the thtetdixnensionality of terrain, mechanism interactions with the 
tcrxain and multiple competing objectives such as minimal energy expcndirurc and maximum mechanism 
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stability. In addition, planning must provide safeguards and respond to contingencies - such as weak soil 

This section discusses configuration of the AMBLER motion planning subsystem. Planners that supply 
task objectives to motion planners arc not discussed; these arc viewed to operate at slow rates and their 
function may be fulfilled m pan by human input from Eartfr. Similarly, the real-time planning level (e.g., 
nflex response to uncxptcted foot-tcxrain collision) is not discussed 8s it is very sptcific to the frnal design 
of associated mechanrsms * and computing hardware. 

Motion planning inputs task prescriptions and generates motion sequences that when executed perfom! 
the task as desired. The challenge for a barren terrain robot is to autonomously generate and model plan 
primitives cansidering h e  physics of cnvhmmmtal intcmch 'on, co~~scql l tncts  of actions and the multiple, 
cortnptting purposes of a mission. Motion planning generates adxnki!: qtions, models them, then 
searches to elect those which avoid pitfalls and forward mission mentions. We foresee the existence of 
motion planmrs for AMBLER walk planning and sampling plannmg. 

Conditions - that inevitably befall an UIlIILBnntd agent. 

Functidspecifcati~fortbcAMBlERmotionplanncfiinchrdc: 
Implement task-level commands: Motion planning must take occasional task prescriptions and 
generate motion scquenccs that will safely execu# the task. Typical task commands might be [move 
North 10 m], or [fmd and retrieve 10 cm dia rock]. Output sequences (trajectories) of position 
W o r  force should mclude any required actuator state i n f o d o n  (e.g., clutched, braked). 

as stability margin, torque and power usage. Motion planners must thenfore model all physics 
relevant to a proposed motion. 
Predict confidence of intended motions: Uncertainty from terrain and state models must be 
incorporated into motion planning such that planners can estimate the relative risk of an action before 
its implementazion. Under normal operating conditions, moves with excessive risk must be rejected. 
Plan geometrically and quasi-statically: Assuming that the mechanism is capable of ptognss without 
resorting to dynamic moves, motion sequences should be geometry-based instead of temporal. This 
permits maximum flexibility for motion executors to pick and modify execution rates and command 
halts at any point during a motion sequence without worry of dynamic &stabilkation. 
Maximize resistance to destabilizcrrio: Planning must give the largest possible margin for execution 
error or Mexpecttd event (e+, failure of a soil slope). For instance, a self-reliant cxplonr that must 
remain upright should nor rely on Critical stabilizing supporr fram an untested terrain contact. The 
ability to adhere to this specification is, however, quite mechanismaependerrt; a rigidchassis rolling 
machine has no inherent ability tochooseortest its nnptndingtmahcontacts. 
Provide ucce'ptrrbie limits with o q u f  motions: Trajectorics that arc planned for execution must have 
acceptability margins, when applicable. During execution, exceeding a limit indicates a condition 
other than predicted by planning and may warrant halting, assessing state and rcplanning. Providing 
a limit on motor toque for a given motor trajectory is an example; if torque exceeds this value during 
execution of the trajectory, motion is halted. 
Incorporate blind d e :  Motion plannus must have the ability to plan task execution without input 
from local terrain perception. Operation in this mode msumes the use of internal position, force and 
proximity-type sensing. While the resulting progress would be extremely slow, it could mean the 
success of the Mars mission. 

Configuration of a motion planner that is responsive to these functional specifications is very 
mechanism wcific;  that is, little of the motion planner can be configured without knowledge of the 
mechanism configuration. However, it is possible to put forth a general fiamework for motion planning 

Robot and terrain mechanics can be posed using classical techniques such as analytic energy 
fundonais. mere  is significant advantage, however, to posing both of these in approximate, discrete 

Incorporate relevam physics: Task prwcriptions will incluck cormram tsthararrtobesatisficd,such 

t 

dlat upholds the functional spccificatians. 
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models that arc amenable to postulating and evaluating discrete states ofrobot-terrain interaction. Once a 
model of a mechanism exists, planning for such interactions becomes a cycle of enumeration, modeling 
and evaluation. This cycle generalizes to planning schemes for selecting route, specifying body positions, 
choosing foot placements and sampling in rugged terrains. The distinctions of planning for one function 
versus another lie only in the specifics of motion primitive, mechanism model and applicable cost penally. 
For example, planning a body move for a walker might consider increments of three-dimensional motion 
as primitives, an energy functional as a mechanism model and energy exptnditurt 8s the cost function. 
Altemately, planning for a foot placement might use mcrcments of downward motion as primitives, robot- 
terrain compliance as a model and robot stability as a penalty function. 

The AMBLER walkslanner is now briefly overviewed. A thorough presentation and discussion of the A 

walk-planner can be found in [5]. The planner determines foot placement locations h the terrain and 
calculates corresponding body and recovering leg motions to advance the vehicle safely along a 
commanded heading. 

A significant portion of the walkglanner selects foot placements. Once foot placements are 
determined, the cycle of enumeration, modeling and evaluation for body motions is based on the following 
considedons (in approximate decreasing order of priority): 

the body must remain continuously stable even if any single leg fails to provide support due to a 

no part of the walker should collide with the terrain (only pcrmissibk perrain contacts arc axial foot 

body progress along the desired heading should bc maximized, and 
joints torques and energy expenditure should be maintained below given thresholds. 

mechanical faillue or failure of the underlying tcrrai& 

p l m - 9 ,  

Once foot placements and body motions have been determined, recovering leg trajectories arc planned 
to avoid other supporting legs and terrain obstructions, and such that the foot properly contacts the terrain 
(axial dirtction only). Finally, the body motion and ncovering leg trajcaxies along with expected peak 
torque values arc output to a walking motion executor. 

4.3. Locomotion Mechanism 
The locomotion mechanism propels the robot over the terrain and implements robot posture. 

Functional specifications for the Mars explorer locomotion mechanism include: 
Traversabiliry: The mechanism must traverse very rugged three-dimensional terrains typical of Fig- 1 
while avoiding selfdamage and irrecoverable circumstances. The mechanism must not require an 
inordinate amount of terrain perception or planning to traverse such- at approximate speeds of 
1 m/min. 
Energy enciency: Total on-board power generation is expected to be less than 1 kw. As the 
dominant energy consumer in this minimal energy system, the locomotion mechanism must be 
extremely power efficient. 
Three-dimensionaI motion: The mechanism must be able to directly execute three-dimensional 
motions. Without this ability, a level of planning is required to &compose desired motions (e.g., - 
move left 1 m) into a series of permissible locomotion primitives - analogous to parallel parking. 
Predicroble and assessable motion: It must be straightforward to model the locomotion mechanism 
and relevant terrain geometry/mechanics from which motion can be accurately predicted. I 
Furthermore, an estimate of subtended motion mnst be assessable to fairly high accuracy. 
Incremental, reversible motion: ThC locomotor must move m consCNatiVe increments such that a halt 
command can be immediately responded to without w o w  of preempting a dynamic move in 
progress. This ability permits reversal of any series of incremental moves, very useful for an 
exploratory machine that by naturc moves into the unknown. 
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Reliabiliry: The locomotive mechanism must be mechanically simple. Furthermore, the mechanism 
must endure long-term cnvirornncntal exporn and wear resulting from traversal of rugged terrain. 
Paylwd isolation and reuctzon: 'Ihe locomotion mechanism must isolate most of the scientific payload 
h m  topology of the rugged terrain. The locomotor must be able to execute small incremental moves 
for h e  positioning of science and sampling eguipment. Finally, tht locomotor must provide reaction 
for sampling equipment (e.g., core drill, soil scoop). 
Tclcopera6ility: Given that occasional operator intervention is foregone, and that the Earth-Mars 
signal delay is signXkant, the locomotor should be casy to tcleopcratc. 

Possible locomotion candidates include mechanisms that roll, walk, or combine rolling and walking 
for so-called hybrid locomotion. (Track laying mechanisms arc grouped here with rolling mechanisms 
because tracks arc in continuous terrain contact and are analogous to large wheels.) Any locomotion 
mechanism must support itself on the terrain and provide a propulsive force for motion. The fundamental 
differences between rolling and walking mechanisms are the means by which support and p p d s i o n  are 
provided. Wheeled machines have rollers in continuous support contact with the terrain and propel 
themselves by generating traction forces parallel to the terrain surface. Alternately, walkers suspend 
themselves over the terrain on discrete vertical contact points and maintain principally vertical contact 
forces throughout propulsion. 

- 

Wheeled Locomotion 
Wheeled mechanisms are the predominant form of locomotion for most manned vehicles and 

unmanned robots. As a result, wheeled mechanisms and their control arc well understood. Reliability, 
weight and pcrfonnance trade-offs arc also well understood. However, for the following reasons, 
wheeled mechanisms axe not suited to the needs of an autonomous robot for exploration of the rugged 
Maxtianmrah 

Traversabiliry is limited. The need for continuous wheel contact limits the ability of a wheeled 
locomotor in rugged, discontinuous terrain. 
Energy efficiency is low. Wheeled mechanisms undergo continuous nonlinear energy losses in 
rugged and soft terrains due to slippage, shear and bulldozing. Furthermore, as the body rises and 

mcchanism-ttaainM Om. 
Mechanical complexity precludes threedimensional motion. Wheeled mechanisms that can subtend 
thrudhmsional body motion dative to the terrain rtquitrc many extra motions for Omni-directional 
steering and suspension. The complexity of such a mechanism exceeds that of some walking 
mechanisms without providing similar rugged terrain perfonnana. 
Unable to accurately predict and assess motion. Due to surface contact constraints, wheel 
compliance, thrte-dimensionality of rugged terrains and mechanism mdetexminacy, detailed terrain- 
interaction models arc intractable for wheel contact through difficult terrain. The consequences of a 
motion command in such a terrain axe therefore unpredictable. Dead-reckoning, the ability of a 
locomotor to self-perceive incremental motion, is error-prone in mild tmains and worsens as the 
texrain becomes rugged, soft, discoMinuous, or slippery. 
Incremental, reversible motions are unlikely. Most wheeled mechanisms arc not quasi-static; some 
moves am dynamic and may not be reversible. For instance, when a wheeled machine drives over a 
ledge, tip-down is usually dynamic. Depending on its configuration and dative power, the machine 
may not be able to revem the tipdown to nuace its path. 
Teleopcration is easy: As long as wheel diameter overwhelms the scale of terrain features, wheeled 
locomotors are inherently straightfornard to teleoptrate. However, as terrain features bccome 
confronting, complex moves (e.g., parallel parking type move to translate sideways) bccome more 
hquent and thus sqmficantly amplicare tclcopedon. 

falls to trace tenain topology, nomxmscrvative work is expended due to losses in the mecharusm * a n d  

c 

c 

53 



Legged Locomotion 
Walking mechanisms isolate the robot's body from the underlying terrain and propel the body 

independent of terrain details; thus walking mechanisms body-terrain isolate. Whereas wheels 
continuously contact the terrain, waking is a senes of discrete tenah contacts. Foot contact forces for 
body support and propulsion arc principally vertical, thus allowing more tractable models of terrain 
interaction than am possible for wheels. 

Walking mechanisms provide the attributes required for the Mars explorer locomotion mechanism: 
Traversabiliry is excellent. A walking mechanism chooses its foot placements to avoid rather than 
confront terrain difficulties. Furthermore, the body can be positioned relative to the ground contact - 
points to maximizC stability against tipover at all times. 
Energy flciency is theorerically high. As a walker traverses rough terrain, the body is maintained at 
a fairly constant orientation and elevation with respect to gravity resulting in gnat power savings. 
More importantly, h e  power losses to tcrrain can be mumuzed by discrete foot placements. 
Morion is three-dimcnsiona 1. Walking mechanisms achieve three-dimensional body motions 
regardless of underlying terrain topology. 
Motion can be predicted and assessed. While easier and more tractable for some walking 
configurations than others, walkers arc able to model and monitor motions rigorously. This is mainly 
due to the predominantly onedimensional naturrt of foot/tmain interactions. 
Motions are incremental and reversible. Assuming a quasi-static walker (i.e., more than 4 legs and a 
slow rate of progress), locomotion can be separated into discrete increments, and moves can be 
undone by "playing back" the incIMnental commands. 
Motions are extensible. A benefit of a walking mechanism to scienMic observation and sampling is 
that body-mounted payloads can be positioned (hovered) over a region of interest using leg motions. 
Legs can also be utilized as samplmg manipulators. 
Teleoperation is dificult. Teleoperation of a walking mechanism requires a "coordination" function 
that takes simple joystick inputs for Cartesian or polar referenced body moves and calculates required 
leg motions. Additionally, the operator must consider stability, select new foot placements, plan foot 
recovery trajectories and monitor body clearance. 

. .  . 

While legged mechanisms would appear to satisQ most of the functional specifications put forth for 
the locomotor, existing walking mechanisms raise valid concerns regarding coordination problems, energy 
losses due to coordination difficulties and reliability. The fundamental coordination impediment has been 
the indeterminacy that attends multiple legs and motions. Coordination difficulties with these complex 
mechanisms lead to actuator conflict, which accounts for large energy losses. The reliability of a 
traditional walker is dirtctly related to leg count and leg configuration on the body. Existing walkers arc 
commonly immobilized after the failure of one or more legs. The AMBLER locomotor configuration 
should overcome these three practical concerns that elude implemented walkers to date: complexity of 
coordination control, resultant energy losses and redundancy for continued function after loss of some 
motions. 

AMBLER Locomotor 
Each AMBLER leg F ig41  consists of two rotary links (shoulder, elbow), which move in a horizontal 

plane and arc termed the "planar" links. A prismatic vertical actuator is appended to the end of the elbow 
link. The AMBLER locomotion mechanism consists of six legs stacked coaxially at their shoulder joints. 
The actuator groups for AMBLER body support and propulsion are orthogonal; a subset of the planar * 

joints propel the body, and the vertical actuators support and level the body over terrain. With aU feet 
supporting load and vertical actuators locked, the body can be propelled by actuating any three of the 12 
planar actuators. The remaining nine planar actuators an declutched or backdrivcn. The AMBLER can level 
itself without propelling and propel without leveling, and exhibits no power coupling between the two 
motions. A strength of the AMBLER configuration, therefore, is its ability to efficiently and simply enact 
planar moves transverse to gravity and elevation moves along the gravity vector. 
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F i g 4  AMBLER Leg 

Decoupled AMBLER body propulsion and body leveling enables &coupled formulation2 of the planar 
and vertical mechanism models. Tbc planar mechanism is &terminant and can be solved very quickly in a 
closed-form. A one-dimensional terrain interaction model suffices for solution of the vertical foot forces. 
Equilibrium, stability margin, forces and energy cost ~ IC  readily assessable from these mechanism and 
terrain models. Such accurate prediction permits torque and power minimization during propulsion. The 
AMBLER leg design thus enables a tractable control model and eliminates energy losses due to actuator 
conflict. 

Internal assessment of incremental motion, termed "dead reckoning", is critical for an autonomous 
machine. As the AMs= propels, all undriven planar actuators assess incremental motion. AMBLER 
dead-reckoning should thus be supcrior to other walkers, as redundant rtckoning information is available 
frommany uncixivm actuators. 

Decoupled propulsion in the horizontal plane allows comsponding simplifications in =presentation 
and planning for the AMBLER. Since foot placements into the terrain axe always vertical "punctures", a 
2.5-D terrain feature model (elevation map) is appropriate for selecting foot placements. Specifically, 
planning a foot placement reduces to a search m the elevation map for a suitable location that will forward 
progress while maintaining a desired stability margin and maximum power level. Once the desired 
location has been selected, the foot is positioned over the te& contact point and the vertical actuator 
telescopes to contact tfie foot on the terrain. It is OUT expcriencc[61 that perception can consume ~0 of the 
computing capacity of an autonomous mobile vehicle. The AMs= leg design and foot placement scheme 
holds promise to reduce the perception bottleneck, as nearly raw elevation data suffices for selecting 
acceptable footplaccments. 

Leg Stack and Body Configuration 
A fundamental locomotion codiguration decision "stacked all legs on a central shoulder axis pig-5 J 

instead of 3 legs each on twin, side-by-side stacks. With the height of the planar leg section about 20 cm, 
a single 6 leg stack is -1.2 m in height and the twin stack - 0.6 m. Motivations for the twin stack beyond 
height reduction included s@lification of wiring and dust sealing a! the shoulders of each leg. 

Tbc dempled formulation is based on thc asJmnptiOn that lateral foot slippage is prevented. The AMBLER is apcted to 
gumate datively low foot sharing forrrs thus rk assumption is d d a d  valid for a majority of ttnain conditions. 
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The best configuration proved to be the single stack, the major reasons for which follow. While the 
twin stack does reduce overall vehicle height, constraints on vehicle height are unsettled from the 
standpoint of the Mars mission. Whereas propelling the body with the single stack configuration is 
identical to positioning a four-bax (determinant) linkage, the twin stack configuration increases it to a five- 
bar linkage (the Bth link connects the centers of the two stacks). Since a five-bar linkage is indeterminate, 
the only way to preserve the determinacy of planar AMs= moves would be to lock one of the joints, 
thus removing a link. The twin stack cod1guration would thus place the added burden on walk planning 
to lock certain joints for determinant planar body motion. Additionally, some means to lock or brake the 
joints would have to be mechanically incorporated. 

4 m  

3 m  

2 m  

l m  

O m  

-1 m 

-2 m 

Fig-5: AMBLER k g  Stack 

A further benefit of the smgle stack leg codiguration is redundancy - the ability to operate any leg m 
any body sector dramatically improves the reliability of the AMBLER over conventional walking 
mechanisms. Any functional leg can reposition itself to substitute for any failed leg. Three legs would 
have to fail to cause immobilization. Resorting to the twin-stack would roughly halve the redundancy 
potential of the AMBm as legs would only be able to functhally replace other legs m the same stack. 

With the single stack configuration, the vertical actuator on the uppermost leg is roughly 1 m longer 
than the vextical actuator of the lowest leg. This extra length is utilized by adding stroke to the upper legs. 
Leg stroke varies from -1 m on the shoatst leg to -2 m on the tallest. The added leg strokes provide more 
pIanning options for level body motion during steep hill climbing (i.e., trail legs with longer strokes) and 
traversal of areas with deep holes or N ~ S  (Le., place legs with longer strokes in holes - shown in Fig-5). 

A unique result of the stacked leg configuration pig-51 is that gaits where ~ a r  legs recover past 
forward supporting legs axe ideally possible. These overlapping gaits mean fewer foot placements with . 
advantages of reduced demand on perception and planning, and significant energy savings due to 
reduction of the number of foot-terrain interactions. An example is shown in Figured; as the walker 
advances, the recovering leg (shown in bold with dashed trajectory) overlaps the two right side supporting 
legs. Depending on a leg's location on the central stack, some weaving around supporting legs may be 
necessary for it to recover past forward legs. 

- 
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1 2 3 

Fq-6: Overlapping Gait (plan view) 

ling equipment, computing, power and communication Tht body, containing science and 
systems, is suspended below the leg stack. mg the body below the leg stack has multiple benefits: 
nK.vehicle center ofgravity is s- lowered. Scicntiiic sensors and sampling equipment mounted 
undcr the body have unobcted downward aCrain views. The body can be lowered to thc ground (body 

"&lc 
gramding) tocnhnrrrr YthiClt scabiuy marigiaity for high Icaction saragling tasks such as deep coring. 

Leg Drivetrain Configuration 
It is possible to degenerate AMBLER walking to an infinite sequence of decoupled primitive 

movements. Each cycle consists of a foot lift, shoulder rotate, elbow rotate, foot lower and lock and body 
propulsion. Body propulsion can be farttrtr decoupled to a sequential mation/braLing of any thrtt 
planar motions. The mechanical implication is that the entire 18-DOF AMBLER could be operated from a 
single gearmotor with a series ofclutches, brakes and drivetrain compo~nts to direct torque to any of the 
18 joints. Th+ other ex- is a gearmotor a# &joint. Any nranber of geannotors between 1-18 could 

The most signikant facton iduencing this decision ColKrmed overall reliability, power efficiency, 
urd implications to walk planning. Any confiiguration with less than 18 gearmotors places additional 
M e n  on walk planning to select proper clutchbrake mtes to properly direct torque from shared 
geaxmoton. Configurations with gearmotors housed within the stationary central nxis and drivekrains 
emplaced through the shoulders were ruled out due to the mechwical complexity required to transfcr large 
torques while still preserving 360" shoulder motion. A mechanically straightforward soluticm configured a 
single shared gearmotor in one ofthe planar h k s  of each leg, with drivetrains and clutching to direct 
torque to my one of the three leg actuators. However, the configpration was deemed unacceptable 
because coordinated joint scbemcs enabling a xccovering leg tip to trace a general trajectory in space were 
not possible. Drivetrain complexity, gignificant power losses and reduced system reliability of 
configurations with s h a d  geanaotors led to a single gearmotor configured at each leg joint. This 
cdigumion also permits ampletc motion and control flexibility for walk planning and control schemes. 

During body propulsion only a subset ofthe planar joints a driven; the balance arc non-powed. As 
a non-powered joint is moved, its gearmotor is backdriven. Alternately, a dutch can bc added to the 
output of the gearmotor to decouple the gearmotor from the joint during the non-powered state. 
Backdriving eliminates the need for 8 clutch at each planar joint, but inducts higher torques on the 
propelling geannotors. Backdriving also eliminates the control task, albeit fairly simple, of 

be collfiglllcd to drive the AMBrsR l ~ o t o r .  

' 

. 
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engagingldisengaging clutches to select the desired propulsion gearmoton. Compounding the decision 
was that clutch power draw and seventy of gearmotor backdriving torque cannot be accurately predicted. 
For thcsc ~~asons, the mechanically simpler solution of backdriving was choien. 

3. Conclusion 
The Mars Rover/Sqle  Retum mission aspires to send an unmanned robot to the distant planet for a 

several year mission during which it will traverse hundreds of kilometers and conduct a variety of 
scicntifk activities. The AMBm is a robot confipratition to mtet the challenge. Thc scope of the MLER 
configuration includes hardware, software and processes for perception, planning and action. The 

&tailed &ign and production of the prototype walker. ConfigLpBtiOLl is the basis for cotltmumg 

Local terrain percepion, motion planning and 1ocOmOtion subsystems combine to form the core of the 
AMBLER robot. The synergy between these subsystems is essential to the success of the prototype 
system. Many AMBLER subsystems wen not discussed in detail, including intermediate and global 
perception, task planning, motion control, science/sampling, computing hardware, health monitoring, 
communication and infrastructure. Configuration of each of these subsystems is also critical to the 
hnctioning AMBLER, and their configuration is completed, though the scope of this paper precluded 
furthcrdctailing. 

A new g e m d o n  of mobile, Perceptive robots is needed to explore and work m natural texrains on 
behalf of man. The challenge motivates 1 class of robot with unprecedented ability for autonomous 
aperations in etlvifoMnents Characttrized by rugged terrain, soh soils and harsh meteorological conditions, 

evolve for duty in Earth applications like military reconnaissance. Successors to these exploratory robots 
will excavate, mine, and till the barren terrains of Earth and the planets. Exploration is invaluable as a 
plncursor to mort aggressive robot functions that forcefully modify their environments, and in the case of 
planetary exploration, as precursors to man's presence. 

. 
. .  

Such the S u r f a c t  Of Mars. Beyond h d i a t e  rtlevance to plamtary explodon, these robots will 
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Abstract 

This paper reports on a case study in autonomous robot exploration. In particular, we describe a working 
mobile manipulator robot that explores our laboratory to identify and collect cups. This system is a first 
step toward our research goal of developing an architecture for robust robot planning, control, adaptation, 
error monitoring, error recovery, and interaction with users. We describe the current system, lessons 
learned from our earlier failures, organizing principles employed in the current system, and limits to the 
current approach. We also discuss the implications of this work for a more robust robot control 
architecture which is presently under development. 

. 



1. Introduction 
We report on a case study in autonomous robot exploration. In particular, we describe a working 

mobile manipulator robot that explores our laboratory in search of cups. This system is a first step toward 
our research goal of developing a robust architecture for robot exploration tasks, covering planning, 
control, error monitoring and recovery, adaptation, and communication with users. It is also intended as a 
testbed for better understanding the task of serni-autonomous robot exploration and sample collection. 
The robot exploration task is of specific interest to us, given a related effort to develop a prototype robot 
to explore the surface of Mars to collect geological samples [l]. This testbed is thus intended both to help 
explore characteristics of the Mars Rover task, and as a general carrier for a broad range of research on 
autonomous intelligent robots. 

The iobot exploraiioii task coiisidered here is m e  in which a mobile :oSot with an attached maniplator 
explores an area using vision and sonar sensors in order to locate and identify cups. When a cup-like 
object is located, the robot navigates to it and uses more detailed sensing to determine whether it is truly 
a cup, and if so what type. It then picks up the cup, travels to a box, deposits the cup, and looks for 
additional cups to collect. 

This task raises a number of general issues that must be addressed for exploration tasks, as well as 
specific issues that must be addressed in the Mars Rover scenario. These include: 

Path planning and navigation 

Observing and identifying encountered objects 

Integrating locomotion with manipulation and perception. 

Maintaining background goals. (e.g., battery charge level) while pursuing the current goal 

Detecting errors (e.g., the cup was not grasped correctly) and recovering from them. 

Communicating and collaborating with a remote human for guidance in dealing with difficult 

(e.g., pick up the object). 

tasks. 

Our present system deals well with some of the above issues, and poorly with others. The 
implemented system autonomously locates cups, navigates to them, picks them up, and deposits them in 
a bin. However, it does not presently manage multiple goals, deal well with unexpected contingencies, or 
collaborate with humans. 

This paper describes the current system, lessons learned from our earlier failures, organizing principles 
employed in the current system, and limits to the current approach. We also discuss what we have 
learned from this work regarding specific problems that must be addressed by the architecture currently 
under design. Section 2 describes in greater detail the hardware setup, task, and approach taken for this 
exploration task. Section 3 characterizes the performance of the system, including interesting failures 
which it has exhibited. Finally, section 4 characterizes lessons learned from this case study, and 
implications for the design of more robust architectures for robot planning and control. 
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2. System Description 

2.1. The Robot Testbed 
Figure 2-1 : A Modified Hero 2000 Robot 

The robot used is a commercially available wheeled robot with arm (the HeatNZenith Hero 2000), as 
shown in figure 2-1. The robot is located in a laboratory in which a ceiling-mounted black and white 
television camera is able to view the entire room through a fisheye lens. Figure 2-2 provides a view of the 
room as seen through this ceiling camera. The Heath robot comes with two standard sonar sensors: a 
rotating sonar on the top of the robot which completes a 360 degree sweep in a little over a second, plus 
a second sonar fixed to the base of the robot and pointing forward. In addition, we have added a third 
sonar to the hand of the robot. Since this third sonar is located on the hand of the robot, it can be 
repositioned relative to the robot body. We have found that this capability is important for smooth 
integration of manipulation and locomotion operations. The cost of this setup is approximately $1 5,000 
(in addition to the cost of the Sun workstation).' 

The robot contains an onboard microcomputer (based on an Intel 8086) which executes all primitive 
motion and sensing commands. It communicates with a Sun workstation running C and Lisp programs. 
Communication between the robot and Sun may be via either a radio link at 600 baud, or an RS232 cable 

'We are considering making the plans and software for this setup available to other universities and research laboratories. 
Interested parues should contact the authors. 
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Figure 2-2: Overhead View of Laboratory as Seen by Robot 
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at 9600 baud. In practice, we have found the 600 baud radio link constitutes a communications 
bottleneck, and therefore frequently utilize the more awkward but faster RS232 tethered connection. 
Table 2-1 summarizes the sensor, effector, and computational characteristics of the robot testbed. 

2.2. The Task and Approach 
As stated earlier, the robot task is to collect cups into a container in the corner of the lab. The top-level 

procedure used by the system to accomplish this task is described in table 2-2. Below we discuss in 
additional detail each of the steps in this high-level plan. 

Locate robot, potential cups, and obstacles. The system begins by examining the visual image 
from the ceiling camera to locate regions that correspond to potential cups, the robot, and other 
obstacles. The image is thresholded and regions extracted by the Phoenix program [5]. The robot region 
is located based on searching a window within the visual field, centered around the current expected 
location of the robot. Within this window, the robot region is identified based on a simple model of the 
properties of its region in the visual field. Potential cup regions are identified by searching the entire 
visual field for regions whose size and shape match those of cups. Since the resolution of this image is 
fairly coarse (approximately 1 inch per pixel), and since a simple thresholded black and white image is 
used, it is possible for the system to identify non-cup regions (e.g., sneakers worn by lab residents) as 
potential cups. In figure 2-2, it is possible to see several cup-sized regions in the image. The robot will 
navigate to each of these regions, using its sonar to explore each in turn. Those which it eventually 
determines are not cups are remembered as such, in order to avoid examining them repeatedly. 

63 



Table 2-1 : Robot Testbed Summary 

Effectors: 
HeatWZenith Mobile Robot with Arm 
Torso rotates relative to base 
Arm mounted on torso 
Zero degree turning radius 
Locomotion precision in laboratory environment returns robot to 

within a few inches of initial position when commanded to 
navigate a 10 foot square 

Sensors: 
Overhead (ceiling-mounted) camera 
Obtains 20 visual regions across entire lab 
Approximately 1 inch resolution 

Forward-pointing sonar on robot base 
(all sonars have range 4-1 27 inches, distance resolution .5 inch, 
uncertainty cone 15 degrees) 

Rotating sonar on robot head 
360 degree sweep in 15 degree increments in 2 seconds 

Movable sonar fixed to robot hand can be repositioned relative to body 

Battery charge level sensor 

Rotating light intensity sensor on robot head 

Computation: 
Speech synthesizer and microprocessor onboard 
Radio link (600 baud) or RS232 cable (9600 baud) to Sun workstation 
A MATROX frame-grabber board on the Sun is used to digitize images 
Generalized Image Library is used to create, maintain, and access image files [3]. 

Navigate to vicinity of target object. Once a target object is located, a path is planned from the 
current robot position to the vicinity of the object. A path consists of a sequence of straight line segments 
and zero-radius turns. The path planning algorithm models the room as a grid of robot-diameter-sized 
grid elements, and utilizes Dijkstra’s shortest path algorithm to compute an initial path. In choosing this 
path, the system takes into account (1) proximity of obstacle regions, (2) total path distance, and (3) 
number of vertices in the path. It then optimizes the path by adjusting each vertex in the initial path, using 
local information to minimize the cost of the path segments on both sides of that vertex. The basic idea 
behind our algorithm is grid search and path relaxation proposed in [8]. Figure 2-3 shows an interpreted 
version of the image from figure 2-2, along with a path planned by the system to reach a potential cup 
region and a uncertainty cone(see below). Here, the brightened line shows the final computed path, while 
the dimmer line is the original path before optimization. 

Once a path is completely planned, the robot begins to follow it. At certain intervals the robot stops, 
uses the ceiling camera to determine its progress, and updates its path accordingly. The System utilizes 
an explicit model of sensor and control uncertainty to determine how far the robot may safely proceed 
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Do until no potential target objects remain: 

Locate robot, potential target objects, and obstacles within visual field 

Navigate to vicinity of target 

Approach and identify target 

Find visual regions 
Identify those with appropriate features 

Plan obstacle-free path to vicinity 
Move along path, monitoring with vision 

Use sonar to locate nearest object in appropriate direction 
Servo using sonar until target centered at 0 degrees, 6.5 inches ahead 
Classify object as non-cup or specific type of cup 

Grasp cup, based on identified cup type 
Make final approach to grasping position 
Move arm and gripper to grasp cup 
Use top sonar to determine whether arm successfully grasped object 

Configure arm and body for safe travel 
Navigate to container 
Orient to center container in front of robot 
Deposit cup in container 

Table 2-2: Top-Level Cup Exploration Procedure 

Figure 2-3: Interpreted Overhead View With Planned Path and Uncertainty Cone 

along its path before a new visual check is required. A covariance matrix representation [7l of uncertainty 
is used. 
and vision. The system introduces a new sensing operation when uncertainties in sensing and control 
have grown to the extent that either (1) collisions with obstacles are possible, (2) the uncertainty modeler 
is unable to model uncertainty accurately, or (3) the visual recognition routines which utilize strong 
expectations about robot location do not have strong enough expectations to operate reliably. 

1 Robot location and orientation are calculated by merging information from both dead reckoning 

By modifying an old path, the path planner can efficiently adapt to small environmental changes, such 
as the robot wandering slightly off the planned path, new obstacles appearing, and old ones 
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disappearing. 

Figure 2-4: Sonar Data Obtained by Wrist Sonar Observing a Cup 

Distance 
of Sonar 

(inches ) 
Echo 

35 I 
I 0 .  

30 I 
I 

25 I 
I 

20 I 
I 

15 I 
I 

10 I 
I 

5 1  
I 

0 -25 -20 -15 -10  -5 0 5 10 1 5  20 25 
W r i s t  angle (degrees) 

  he data in  angle-distance pairs is: 
(-25 31) (-20 32) (-15 32.5) (-10 7) (-5 7) 
(0  6 .5 )  (5 6 . 5 )  (10 7) (15 7 . 5 )  (20 24 .5)  (25 2 4 ) .  

The data was taken while two boxes were placed on the background of the cup. 

Approach and identify target. Navigation under the direction of vision is able to place the robot within 
several inches of its desired location. In order to successfully grasp an object, however, the relative 
position of the robot and object must be controlled with significantly greater precision (on the order of an 
inch or less). Thus, once the robot reaches the vicinity of the target object, it utilizes its sonar to locate 
itself more precisely relative to the target object and to classify it. Figure 2-1 shows the pose which the 
robot assumes in order to utilize its wrist sonar to detect the location and dimensions of the object. The 
wrist is rotated from side to side in order to sweep directly ahead and detect the object. This sweep 
provides a one-dimensional horizontal array of sonar data giving distance readings as a function of wrist 
angle. Figure 2-4 shows a typical set of data obtained by the hand sonar when observing a cup in this 
fashion. Simple thresholding, edge finding, and region finding routines are then used to process this 
one-dimensional array in order to locate the object in the sonar field of view. 

Once the object is located in the sonar field, its distance and orientation are used to compute robot 
locomotion commands to bring the object to 0 degrees (plus or minus 2 degrees) and 6.5 inches (plus or 
minus .5 inch) in front of the wrist sonar. To overcome sensing and control errors, this procedure is 
repeated after the locomotion commands are executed until the sonar detects the object at the desired 
position. Typically, this servo loop requires from 1 to 3 cycles before convergence. Once in position, the 
object width and height are measured (in degrees of wrist motion) to identify the object as either (a) an 
upright standard-sized Styrofoam coffee cup, (b) an upright Roy-Rogers Big Chiller cup, or (c) neither. 

Grasp object. If the-object is identified as one of the two known types of cups, then it is grasped by a 
procedure specific to that object. The grasping operation itself does not use sensory feedback to guide 
the hand-all the sensing work is performed during the precise positioning of the robot during its approach 
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to the object. With this reliability in positioning, it is fairly rare for the grasping operation to fail. Note that 
the lack of a need for sensing here is due in part to the fact that the object shape and dimensions are 
know a priori, and to the predictability of the physics of interaction between the gripper and object. If one 
were to attempt picking up a rock of unknown size and shape half buried in the sand, significant sensing 
would most likely be essential to monitor the details of the manipulation operation. 

Once the grasp action is completed, the robot raises its hand so that the object which it is (presumably) 
holding may be detected by the head sonar. This check allows the system to verify the success of the 
grasping operation. If it instead detects failure, then the system labels the corresponding visual region as 
a "fools-cup" and subsequently avoids it. No attempt is presently made to replan or recover from 
manipulation errors, though this is a topic we intend to pursue in the future. 

Navigate to container and deposit cup. Once a cup has been successfully obtained, it is tucked in to 
protect the arm during travel, and a path is planned to the container. The cup is then deposited, and once 
again the system looks for a new cup to collect. 

3. System Performance 
The system described above is fairly successful at locating and collecting cups. We estimate that it 

succeeds approximately 80-90% of the time in finding, retrieving, and depositing cups that are placed on 
the floor away from the perimeter of the room in unobstructed view of the camera. It typically requires on 
the order of 5 minutes to locate a candidate cup, navigate to it, pick it up, and drop it off in the container 
(when communicating via the 9600 baud tether). Approximately half of this time is spent navigating to the 
cup and later to the container to drop it off. The other half is spent near the cup, refining the relative 
position of the robot and cup, identifying the object, and grasping it. The overall time increases by a 
factor of three when using the 600 baud radio link, indicating that when the radio link is used the system 
bottleneck is the low baud rate communication link which must pass commands from the Sun to the robot, 
and sensor data from the robot back to the Sun. 

Since many of the most interesting lessons we have learned arise from observing failures of the 
system, we summarize several of these encountered failures in table 3-1. The point to notice about these 
failures is that they typically arise either because of lack of appropriate sensing (e.g., the collision of the 
hand against the table when picking up a cup under the table edge), outright errors in sensing (e.g., when 
the short cup is not found by the sonar), or because of our lack of imagination in anticipating the many 
possible interactions between subparts of the procedure (e.g., that after picking up the cup, the robot 
would refuse to move because the vision system saw the cup held in front of the robot as an obstacle!). 

Perhaps some of these errors could have been avoided had we originally included more sensing on the 
robot's part or more imagination on our own. However, the nature of unengineered environments is that 
they provide a continual source of novel and unanticipated contexts, interactions and errors (e.g., a cup 
found beneath the edge of the table, a second cup positioned unfortunately near the target cup so that it 
is run over). It seems unlikely that one can expect to anticipate all possible interactions and novei 
situations in advance. 

Given that such unanticipated events are bound to occur, and given that the system cannot afford to 
sense everything that 'goes on in the environment, an important question is exactly what needs to be 
sensed at a minimum to assure basic survival of the robot, and what kinds of sensors and sensor 
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Table 3-1: Typical System Failures and Causes or Repairs 

Vision system fails to find robot. 
0 This can happen when the robot region overlaps another visual region. This is usually not 

fatal, since the system then uses the expected robot location (based on dead reckoning) in 
place of observed location, and proceeds. 

Misses container when it deposits cup. 
This can occur due to sensing error in the visual determination of the robot orientation 
relative to the container. This could be overcome by more tedious servoing with the sonar to 
center the robot in front of container to some desired tolerance. 

Robot fails to dock successfully with battery charger. 
0 This is due to the fact that we initially underestimated the tolerance of the docking element to 

error in the robot position, and overestimated the sensor error involved in using the sonar to 
position the robot relative to the docking element. As a result, the system refuses to dock 
because it believes it is not positioned precisely enough relative to the docking element, 
despite the fact that it is! This failure is interesting in that it is a direct consequence of the 
difficulty of estimating sensor and control errors in advance. 

Runs over other cups when trying to grasp one of them 
This is because approach and grasp routines do not watch out for obstacles. 

Execution monitoring causes failure if  person walks through field, and is seen as an obstacle 
This is because system does not distinguish moving from non-moving objects. 

Finds non-cup objects (e.9.. sneakers) which appear visually to be cups. 
These are generally identified as non-cups upon closer examination. But they can result in 
considerable wasted time. 

Time was wasted conducting sonar weeps at needlessly detailed resolution while positioning robot 
relative to cup. 

This is due to the fact that we could not accurately know in advance how finegrained the 
sonar sensing should be (Le., collect a reading every 2, 5, or 10 degrees). Once we 
experimented and determined that we had chosen an overly conservative value, we 
decreased the resolution to increase efficiency without increasing the error rate. 

Arm collides with table after picking up cup that is under edge of table. 
This occurs when the robot raises its hand to use the head sonar to determine whether it has 
successfully grasped the cup. Due to failure to check hand trajectory for collisions. 

Robot unable to navigate to container, because grasped cup is now seen by vision system as an 
obstacle in front of robot(!) 

0 This was repaired by having the robot hold the cup behind itself. Vision still sees the cup as 
an obstacle, but now it is behind the robot. 

placements simplify the processing of this sensor data. As an example of a reasonable sensing strategy, 
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consider that by implementing arm motions so that the (movable) wrist sonar is pointed in the direction of 
the arm sweep, it is possible to use this sonar sensor as a proximity sensor to detect unanticipated 
collisions before they occur. This strategy would allow the system to avoid damaging itself even when 
unanticipated situations arise, such as raising the cup from beneath the table. Once this sensed 
condition were detected, it could be used as a trigger to attempt to explain and recover from the failure. 

4. Lessons from The Case Study 

uncertainties on the task, and suggests capabilities that we intend to incorporate in future extensions to 
This section summarizes organizing characteristics of the current system, discusses the impact of . 

the current system. 

4.1. Characteristics of the Prototype System 
0 Few general-purpose approaches were needed. Although the general problem of 

planning arm trajectories and grasping motions is very difficult, we found little need for such 
methods. Instead, we defined a simple, fixed, blind grasping routine, determined the context 
in which it would succeed (he., the relative position and orientation of the cup and the 
tolerance to error in this relative position), and then designed the remainder of the system to 
assure that the robot would position itself so that this specialized routine would succeed. 
Thus, the system gets away with simple, specialized grasping at the cost of stronger 
demands on the routines that must position the robot relative to the cup. A similar situation 
holds for the problem of object identification. Classifying object identity from an arbitrary 
distance and vantage point is a computationally demanding task, which is avoided in this 
case by servoing to a known vantage point before attempting to identify the object2. The 
acceptability of such specialized procedures for grasping and object identification suggests 
that solutions to general problems can sometimes be found by embedding specialized 
methods inside larger procedures that assure these procedures are only invoked within 
specialized contexts. This system organization involving collections of coupled, but 
specialized, routines is similar to that advocated in [2]. The one major case in which general 
purpose planning is used in the system is in the path planning component. We see no way 
to avoid the need for such general-purpose solutions in this case. 

Explicit reasoning about sensor and control uncertainty allows intelligent utilization of 
expensive sensing operations. The first implementation of the system monitored the robot 
navigation by employing a visual check at each vertex of the robot's path. This was 
subsequently replaced by a strategy that selects appropriate sensing operations based on a 
model of the vision sensing and robot motion uncertainties as well as the positions of 
obstacles. This shift resulted in both a significant speedup/reduction in the number of vision 
operations typically performed, and an increase in reliability of navigation in cluttered 
environments. 

Both low-level and high-level sensor features used in decision making. The sensor 
data is generally interpreted in terms of features at differing levels of abstraction. For 
example, a sonar data sweep gives rise to a one-dimensional array of distance versus angle 
readings. This array is interpreted to find progressively higher level features such as sonar 
edges, regions, region widths, and object identities. We found it useful for the decision- 
making procedures of the robot to utilize all of these levels of interpreted data in various 
contexts. For example, raw sonar readings are used to determine whether the cup is in the 
robot's hand, whereas sonar edges are used to decide on the object height, and region 

*Note the fact that the cup is a cylindrical object allows cleanly separating object identification from positioning the robot at a 
known vantage point relative to the object. It would be interesting to extend this approach to objects that lack this cylindrical 
symmetry. 
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widths are used to determine the object diameter. This suggests that it will be important for 
the perception module of our new architecture to allow access to sensor data at mUltiple 
levels of abstraction. 

Multlple Coordinate frames found useful. We also found it useful for the system to reason 
in differing coordinate frames. The world-centered coordinate frame is used for path- 
planning and navigation tracking, whereas a wrist-oriented coordinate frame is used to 
describe the expected dimensions of the known types of cups (since this is the coordinate 
frame in which the raw sensor data is produced). We also found it easiest to use the wrist 
coordinate frame to describe the desired and observed position of the cup relative to the 
robot. Converting to the world-coordinate frame in this case introduces needless 
computation and rounding errors (though it is possible that doing so would make it easier to 
avoid obstacles whose positions are described in the world coordinate frame). 

Communications bottleneck indicates that computational complexity is relatively low. 
The fact that the 600 baud radio link causes a very significant slowdown in the overall system 
is an indication that the processing demands of this task are relatively small compared to 
communication demands. Of course it is not clear that this would continue to be the case in 
less sttuctured environments, or as the system is scaled up to handle more sensors, or to 
respond to dangerous situations in real time. 

4.2. Pervasive Uncertainty 
The robot faces many types of uncertainty. It lacks a perfect description of its world, because its 

sensors cannot completely observe the world. In addition, it lacks a perfect characterization of the effects 
of its actions, so that even if it had a perfect characterization of its world it (and we) would have difficulty 
constructing perfect plans in advance of executing them. These are commonly cited difficulties of real- 
world robotics problems. 

One type of uncertainty that has been especially important in the development of this system is our 
own uncertainty about the sensor and control errors of the robot. For example, when developing the 
routine to position the robot in front of the cup, we did not know what resolution to use for the sonar 
sweep (i.e., should the robot scan from -45 to 45 degrees in 1 degree increments, or something else). 
We also did not know how precisely the robot would have to be positioned relative to the cup (0 degrees 
and 6 inches, plus or minus what error tolerance?). In fact, we simply picked numbers for these 
parameters, and then tested the system. If it failed to successfully grasp the cup, we increased the 
sensor resolution or the positioning tolerance. If it succeeded but operated too slowly, then we decreased 
these parameters. The point is that correct values for these parameters are impossible to derive in 
advance, unless one knows in detail the sonar reflectance properties of the object, the spread in the 
sonar signal as it travels, the tolerance of the gripping action to errors in relative position, etc. We did not 
know these facts, but found it fairly simple to guess some initial parameter values and then increase or 
decrease as needed. 

8 

This has significant implications for the feasibility of automatic planning by the robot to deal with new 
situations (consider something as simple as planning to pick up a new type of cup). We believe it may be 
easier for such automatic planning to proceed by selecting and then adapting parameter values through 
experience, just as we found ourselves doing, rather than attempting to plan correctly all parameter 
values based on a detailed analysis of the physics and models of sensor and control errors (as 
suggested, for example, in 141). We intend to explore this type of robot learning in the future. 

.a 
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4.3. Target Capabilities for the Task Control Architecture 
We are presently reimplementing an extended version of the prototype system within a more principled 

architecture that is intended to increase the robustness of the system [SI. In particular, we intend to this 
architecture to provide new capabilities including: 

0 Reacting to a changing world. If the system is attempting to reach a cup and the cup tips 
over, or someone picks it up, or a new obstacle appears in its path, the robot should react 
appropriately to these changes in its world. To do so requires at a minimum the sensing 
capability and focus of sensor attention to detect such changes. But it also requires 
determining an appropriate response in an appropriate time frame, while gracefully 
discontinuing the current activity of the robot. Our new architectur' is intended to support 
such reactive abilities by maintaining dependencies between sensed data and current goals 
and subgoals. Such dependencies will be used to determine which, if any, current goals or 
beliefs should be revised in the face of changing sensor data. 

0 Supporting multiple goals. The current system has no explicit goals, though implicitly its 
procedures cause it to appear to exhibit goal-directed behavior. A realistic system should 
have multiple explicit goals (e.g., "maintain the battery charge", "obtain cups", "avoid 
obstacles"). We intend for our architecture to support such multiple goals, and to be able to 
switch among them as appropriate. For instance, if the robot is approaching a cup and finds 
that its battery charge is becoming dangerously low, it should suspend its attempts to 
achieve the "obtain cup" goal in order to attend to the higher priority "recnarge battery" goal, 
and then later resume the interrupted activity. 

Temporarily overrldlng or undoing achieved goals. Once the system has multiple goals, 
then subtle interactions can occur. For example, if the robot is carrying the cup to the 
container and encounters an impassable field of obstacles, then it might need to put the cup 
down and use its hand to clear its path of obstacles. Afterwards, it should pick up the cup 
and continue to pursue its original goal. This type of overriding and undoing a partially 
achieved goal (putting down the cup which has already been successfully grasped) and later 
resuming, is typical of the kind of goal interactions we believe our architecture must support. 

Detecting and recovering from errors. The present system is able to detect some types of 
errors (e.g., to determine that it failed to grasp the cup). We intend for our architecture to 
support more complete error detection as well as reasoning about how to recover from 
certain types of errors. For example, if it is determined that the system failed to pick up the 
cup, the system should attempt to characterize why (e.g., it was not a cup, but only a round 
piece of paper on the floor: or the cup was tipped over during the grasping operation), and to 
replan accordingly. General error detection and recovery is extremely difficult, but we believe 
that all dangerous errors must at least be detected and dealt with to assure the survival goal 
of the robot is maintained. Beyond that, we also intend to explore recovering from certain 
errors in a fashion that allows the original goal to be effectively achieved. 

Collaborating with remote human advisor. We desire for our system to communicate with 
a remote human advisorkommander in order to obtain new commands and to obtain advice 
about how to deal with difficult situations that arise in pursuing its goals. This is an especially 
important issue in the context of the Mars Rover project, in which such collaboration must 
occur under the constraint of large time delays. Here, the usual methods of human 
teleoperation do not work well. Instead, the robot must play a much greater role in deciding 
when intervention is needed and what information to send to the human to allow him/her to 
help make the decision. In the context of the current testbed, we intend to study such issues 
by allowing the robot to communicate with a person in another room. For example, if the 
robot finds that it has failed to place the cup correctly in the container, then it may decide (a) 
to try again, (b) to ask for assistance and send appropriate information regarding the current 
situation and plausible cause of the error, or (c) to do both in parallel. 
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Perception for Rugged Terrain 1 

In So Kweon, Martial Hebert, Take0 Kanade 
The Robotics Institute, Camegie Mellon University 

5000 Forbes Avenue, Pittsburgh PA 15213 

ABSTRACT 

To perfom planetary exploration without human supervision, a complete autonomous robot must be able 
to mode! its envLmnment a d  locate itself w U e  expbring its sumundings. To this end, estimating motion 
between sensor views and merging the views into a coherent map are two important problems. In this paper, 
we present a 3-D perception system for building a geometrical description of rugged terrain environments 
from range data We propose an intermediate representation consisting of an elevation map that includes an 
explicit representation of uncertainty and labeling of the occluded regions. We present an algorithm, called 
the Locus method, to convert range image to an elevation map. An uncertainty model based on this algorithm 
is developed. Based on this elevation map and the Locus method, we propose a terrain matching algorithm 
which does not assume any c o ~ ~ ~ ~ ~ ~ n d e n c t s  between range images. The algorithm consists of two stages: 
Hm, a ftaturt-based matching algorithm computes an initial trausform. Second. an iconic terrain matching 
algorithm that minimizes the mmlation between two range images is applied to merge multiple range images 
into a uniform representation. We present terrain modeling results on feal range images of rugged terrain. 

1 INTRODUCTION 
Exploration of the rugged terrain of Mars without human supervision requires a vehicle capable of both 
navigation and sampling. To navigate it must perceive its environment, plan a path through a model of the 
environment and maintain knowledge of its position. These requirements necessitate a system of perception 
that can build and maintain terrain maps which include infoxmation such as geometry and soil type. Building 
detailed 3-D geometrical descriptions is a critical technique for safe navigation and sampling in the unstructured 
rugged environment of Mars. A legged locomotor, such as the AMBLER [2] (shown in Figure 1). is dependent 
upon accurate 3-D knowledge of the terrain for reliable foot placement and leg recovery. Therefore, 3-D 
perception is a necessary component of the AMBLER system. In this paper, we discuss terrain modeling and 
representation issues for rugged terrain. We also pnscnt 3-D perception algorithms to construct detailed local 
terrain maps from a laser rangefinder. These algorithms arc a fundamental part of the perception system for 
the AMBLER. 

Elevation maps have bcen reported to be an efftctive representation method: A Cartesian elevation map 
(CEM) representation is used for cross-wun~y navigation [8]. Asada [l] used elevation map for fusing range 
and intensity data in a structured environment. 

In this paper, the Locus Method is in!roduccd for building iconic representations (elevation maps) which are 
applied to modeling rugged terrain. The Locus Method uses a model of the sensor and provides interpolation 
at arbitrary rtsolution without making any assumptions on the terrain shape other than the continuity of the 
surface. In order to take into amunt uncertainty inherent in sensor measurements, an uncertainty model for 
an iconic representation (elevation map) is proposed. 

"lhis nscarch wa sponsored by NASA under Contract NAGW-1175. The views and conclusions contained in this 
document are those of the authors and should not be intcrprtttd as representing the official policies. either C X p S S e d  or 
implied, of the funding agencies. 
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Figurc 1: Sketch of Ambler 

Featurt-based matching methods, which compute the motion by finding comspondencts between features, 
have btm successful in suuctured awironmcnt (e.g., indoor navigation) [10,15,18,7,1,24]. Thtse motion 
estimation methods, however, have limited successes for outdoor navigation , since extracting reliable features 
and finding correspondences arc more difficult in rugged terrain environment. Recent work [23] introduces 
a method, based on a smooth surface assumption, for determining observer motion from sparse range data 
without assuming correspondence. Smooth surf= assumption, however, may not be applicable for rugged 
€em. 

In this paper, we inuDduce an iconic matching method to optimally compute the motion which does not 
q u i r e  any comspondences or smooth surface assumptions. The iconic method presented in this paper work 
directly on the two sets of data points, P' and by minimizing a cost function of the form F(T(F) ,P1)  
where T(P2) is the set of points from view 2 transformed by a displacement T. The cost is designed so that 
its minimum comesponds to a "best" estimate of T in some sense. The minimization of F leads to an iterative 
gradient-like algorithm. Although less popular, iconic tcchniques have been successfully applied to incremental 
depth cstimation [18,17] and map matching [23,9]. Fcaturt-based matching approach is used to compute an 
initial estimation of the motion which is important for fast convergence in our gradient descent optimization 
technique. The high Curvature points arc viewpoint-independent featurcs that can be used for matching. We 
extract the high mature points from both images of principal curvature. We group the extracted points 
into regions, then classify each region as point feature, line, or region, according to its size, elongation, and 
mature distribution. We find the comsponding regions and compute the motion. 

There arc many sensing strategies for perception for mobile robots, including single camera systems, 
sonars, passive stem, and laser range finders. In this paper, we focus on perctption algorithms for range 

the calibration problems and computational costs inherent in passive techniques such as stem. 
In this paper, we first describe the range sensor that we used in this work. Even though we tested 

our algorithm on one specific range sensor, we believe that the scI1sor characteristics arc fairly typical of a 
wide range of sensors [4]. We explain the Locus Method which converts range images to elevation maps, 
and introduce uncertainty model for elevation maps taking into account the shape of sensor noise and the 
characteristics of the Locus Method. We demonstrate the performance of this algorithm by comparing it with 

L 

that provide 3-D data dirtctly by active Sensing. Using such -IS has the a d v a t a s  Of eliminating 
. 
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traditional algorithms on test range images with different noise levels. We examine a couple of applications of 
elevation maps. Then, we introduce two matching algorithms: iwnic and feature-based matching algorithms. 
These matching algorithms arc tested and demonstrated on real range images of outdoor scene and synthetic 
range images. 

. 2 ACTIVE RANGE SENSING 
The basic principle of active scnsing techniques is to observe the reflection of a reference signal (sonar, laser, 
radar..etc.) produced by an object in the enviranmcnt in order to compute the distance between the sensor and 
that object 

Active sensors arc attractive to mobile robots Itsearchers for two main rcasons: first, they provide range 
data without the computation overhead associated with conventional passive techniques such as s t e m  vision, 
which is important in time cxitical applications such as obstacle detection. Stcond, it is largely insensitive 
to outside illumination conditions, simplifying considerably thc image analysis problem. "'his is especially 
impoxtant for images of outdoor scenes in which illuminarion cannot be conv~lled or predicted. In addition, 
active range finding technology has dcveloptd to the extent that makes it realistic to consider it as part of 
practical mobile robot implementations in the short tern [4]. 

The range sensor we used is a time-of-flight laser range finder developed by the Environmental Rcsearch 
Institute of Michigan (ERIM). 'Ihe basic principle of the sensor is to meawe the difference of phase between 
a laser beam and its reflection from the scene [Z]. A two-mirror scanning system allows the beam to be 
directed anywhere within a 30" x 80' field of view. The data produced by the EFUh4 sensor is a 64 x 256 
range image, the range is coded on eight bits from zero to 64 feet, which corresponds to a range resolution 
of thrte inches. All rneaSuments are all relative since the sensor measures differences of phase. That is. a 
range value is known mdub 64 feet. We have adjusted the ScIlSor so that the range value 0 corresponds to 
the mirrors for all the images presented in this report A fim order approximation of the standard deviation 
of the range noise, o is given by [13]: 

D* 
cos 8 

nu- 

The proportionality factor in this equation depends on the charactexistics of the laser transmitter, the outside 
illumination, and the reflectance p of the surface which is assumed constant across the footprint in this first 
order approximation. Figure 2 shows a range image of an outdoor sccne. 

The position of a point in a given coordinate system cazl be derived from the measured range and the 
direction of the beam at that point. The carttsian coordinates of a point measured by the range sensor arc 
given by the quations2: 

T x = Dsin8 (2.2) 

I 

y = Dwsq5cos8 
z = Dsint$cosB 

where t$ and 8 art the vertical and hoxizmtal scanning angles of the beam d i d o n  corresponding to row 
and column position in the image. Agun 3 shows an overhead view of the scene of Figure 2, the coordinates 
of the points arc computed using Eq. (2.3). 

2Note that rhe nfercncc coodime s y s m  is not the same as in [12] for consistency reasons 
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Figure 2: Range image 

Even though the format of the range data is an image, this may not be the most suitable structuring of the 
data for extracting infoxmation. For example, a standard representation in 3-D vision for manipulation is to 
view a range image as a set of data points m c d  on a surface of the quation z = f ( x , y )  where the x- and 
y-axes an parallel to the axis of the image and z is the measured depth. This choice of axis is natural since 
the image plane is usually parallel to the plane of the scene. In our cast, however, the "natural" reference 
plane is not the image plane but is the ground plane. In this context, " p m d  plane" refers to a plane that is 
horizontal with respect to the vehicle or to the gravity vector. The IcprtStntaton z =f(x,y) is then the usual 
concept of an elevation map. To &om the data points into an elevation map is useful only if one has a 
way to access them. The most common approach is to discrctizc the (x,y) plane into a grid. Each grid cell 
(Xiyyi) is the tract of a vertical column in spact, its field. All the data that falls within a cell's field is stored 
in that cell. 

Although the elevation map is a natural concept for tenah rcprescntalions. it exhibits a number of problems 
due to the conversion of a regularly sampled image to a different reference plane [13]. Although we propose 
solutions to these problems in Section 3.1, it is important tD keep them in mind while we investigate other 
terrain rcpresentations. The first problem is the sampling problem: Since we perfom some kind of image 

b 

. 

I warping, the distribution of data points in the elevation map is not uniform, and as a result conventional 

Figure 3: Overhead view 

3 TERRAIN REPRESENTATIONS 
The main task of 3-D vision in a mobile robot systrm is to provide sufficient information to the path planner 
so that the vehicle can be safely s t e e d  through its environment. In the casc of outdoor navigation, the task 
is to convert a range image into a representation of the terrain. We use the word "terrain" in a very loose 
sense in that we mean both the ground surface and the objects that may appear in natural environments (e.g. 
rocks). In this Section we discuss the techniques that wc have implemented for Mars Rover systems. We 
first introduce the concept of the elevation map as a basis for terrain representations and its relationship with 
different path planning techniques. 

3.1 The elevation map as the data structure for terrain representation 
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image p b g  algorithms cannot be applied directly to the map. "here arc two ways to get mund  the 
sampling problem: We can either use a base structurr: that is not a regularly spaced grid, such as a Delaunay 
triangulation of the data points [ 191, or we can interpolate between data points to build a d e w  elevation map. 
The former solution is not very practical because of the complex algorithms required to access data points 
and their neighborhoods. We describe an implementation of the latter approach in Section 3.1. A sccond 

information is available within the shadowed regions of the map, we must represent them separately so that 
no interpolation takes place acm them and no nphantomn features arc ntportcd to the path planner. Fmally. 

each grid point (x, y). Tbis amversion is difficult due to the fact that the sensor's uncertainty is most naturally 
rcprcsented with rtspect to the direction of measurement and therefore spreads across a whole region in the 
elevation map. 

The elevation map derived dinctly from the sensor is sparse and noisy, cspccially at greater distances from 
the sensor. Many applications, however, need a dense and accuxate high resolution map. One way to derive 
such a map is to interpolate between the data points using some mathematical approximation of the surface 
between data points. "he models that can be used include linear, quadratic, or bicubic surfaces [ 191. Another 
approach is to fit a surface globally under some anoothncss assumptions. 'zhis approach includes the family 
of regularization algorithms [a]. 

Two problems arise with both interpolation approaches: They make priori assumptions on the local shape 
of the terrain which may not be valid (e.g. in the casc of vely rough terrain), and they do not take into 
account the image foxmation process since they art generic techniques independent of the origin of the data. 
In addition, the interpolation approaches depend heavily on the resolution and position of the reference grid. 
For example, they cannot compute an estimate of the elevation at an (x,y) position that is not a grid point 
without nsampling the grid. We propose an alternative, the locus algorithm [13], that uses a model of the 
sensor and provides interpolation at arbitrary resolution without making any assumptions on the terrain shape 
other than the continuity of the surface. 

* problem with elevation maps is the ItpnsCntation of the range shadows crcated by some objects. Since no 

we have to convert the nokc on the original mcasuTtznents into a measure of uncertainty on the z value at . 

3.1.1 The Locus algorithm for the optimal interpolation of terrain maps 

The problem of finding the elevation z of a point (x,y) is quivalent to computing the intersection of the surface 
observed by the sensor and the vertical line passing through (x,y). The basic idea of the locus algorithm is to 
convert the latter foxmulation into a problem in image space Figure 4). A vertical line is a c u m  in image 
space, the locus, whose equation as a function of 4 is: 

f when 4, 8, and D arc defined as in Section 2 Equation (3.4) was derived by inverting Equation (2.3), 
and assuming x and y constant. Similarly, the range image can be viewed as a surface D = I ( ip ,e )  in $,e, 
D space. "he problem is then to fmd the intersection, if it exists, between a curve parameterized by 4 
and a discrete surface. Since the surface is known only from a sample of data, the intersection cannot be 
computed analytically. Insttad, we have to search along the m e  for the intersection point. The search 
proceeds in two stages: We fim locate the two scanlines of the range image, 41 and h, between which the 
intersection must be located, that is the two constcutive scanlines such that, Diff(4i) = Di(+i) - 1(+1, Ji(q+)) 
and Diff(&) = Df(ipl) - I(&, df(Qr)) have opposite signs, when &4) is the image d u m n  that is the closest 
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to @I(&. We then apply a biaary search between 41 and h. The search stops when the diffemct between 
the two a n g l ~ ~  4 n  a d  &+1, where Diff(&) and D#f(dn+l) have opposite signs. is lower than a threshold c. 
Since then arc no pixels bctwtcn 91 and &, we have to perfom a local quadratic interpolation of the hage  
in order to compute el(+) and Dr(4) for 41 < 4 c &. The conml points for the interpolation art the four 
pixels that surround the intersection point. The final d t  is a value 4 that is convened to an elevation value 
by applying Equation (2.3) to 4, &(4), Q(4). The nsolution of the elevation is controlled by the choice of the 
parameter c. 

4 

lint 

%v - 
Figure v 4: e ocus algorithm for elevation maps 

The locus algorithm enables us to evaluate the elevation at any point since we do not assume the existence 
of a grid. The unccxtainty in the elmation can be approximated by a Gaussiau distxibution [13]. 

Figure 5 shows thc d t  of applying the locus algorithm on range images of UIICVCII teain, in this case 
a construction site. The Hgun shows the original range image and the elevation map displayed as an isoplot 
surface The centen of the grid cells arc ten ctntimeten apart in the (x,y) plane. 

3.1.2 Generalizine the locus algorithm 
We can generalize thc locus algorithm from the case of a vertical line to the case of a general line in space. 
This generalization allows us to build maps using any reference plane instcad of being rtstricted to the (x ,y)  
plane. This is important when, for example, the sensor's (x,y) plane is not orthogonal to the gravity vector. A 
line in space is defined by a point u = [ux, 4, uJ'. and a unit vector v = [vx, vy, vJf. Such a line is parameterized 
in X by the relation p = u + Xv if p is a point on the he. A general l i e  is still a cuwe in image space that 
can be parameterized hq5 if we assume that the line is not parallel to the (x ,y)  plane. The quation of the 

79 



Figure 5: The locus algorithm on range images 

We can thcn compute the intersection between the c u m  and the image surface by using the same algorithm 
as before except that we have to use Equation (3.5) instead of Equation (3.4). 

The representation of the line by the pair (u,v) is not optimal since it uscs six parameters while only four 
parameters axe needed to rtprcscnt a line in space. For example, this can be troublesome if we want to compute 
the Jacobian of the intersection point with xtsp~ct to the parameters of the line. A better alternative [ 141 is to 
nprtsent the line by its slopes in x and y and by its intersection with the plane z = 0 (See [21] for a complete 
swey  of 3-D line rtprtscntations). The equation of the line thcn becomes: 

t 

x = a z + p  (3.6) 

y = b t + q  
e 

We can still use Equation (3.5) to compute the locus because we can switch between the (u,b,p,q) and (u,v) 
representations [13]. 
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3.1.3 Evaluating the locus algorithm 

We evaluate the locus algorithm by comparing its ptrformancc with the traditional interpolation algorithms on 
a set of synthesized range images of simple scents. The simplest scenes are planes at various orientations. 
Furthermore, we add some range noise in ordcr to evaluate the robustness of the approach in the presence of 
noise. The ptrfomanca of the algorithms arc evaluated by using the mean squarc  em^: 

s 

where hi is the t ~ c  elevation value and & is the estimated ClevatiOn. Figurt 6 plots E for the locus algorithm 
and the naive interpolation as a function of the slop of the observed plane and the noise level. This result 
shows that the locus algorithm is more stable with respect to surface orientation and noise level than the other 
algorithm. This is due to the fact that we perf01111 the interpolation in image space instead of first convening 
the data points into the elevation map. 

? 
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Figure 6: Evaluation of the locus algorithm on synthesized images 

3.1.4 Detecting the range shadows 

As we pointed out in Section 3.1, the tenah may exhibit range shadows in the elevation map. It is imponant 
to identify the shadow regions because the terrain may have any shape within the boundaries of the shadows, 
whereas the surface would be smoothly interpolated if wc applied the locus algorithm directly in those areas. 
This may d t  in dangerous situations for the robot if a path msscs one of the range shadows. A simple 
idea would be to detect empty regions in the raw elevation map, which arc the projection of images in the 
map without any interpolation. This approach d m  not work because the sizc of the shadow regions may be 
on the order of the average distance between data points. ' h i s  is especially me for shadows that are at some 
distance from the sensor in which cast the distribution of data points is very sparse. It is possible to modify 
the standard locus algorithm so that it takes into account the shadow areas. The basic idea is that a range 
shadow corresponds to a strong occluding edge in the image. An (z,y) location in the map is in a shadow 
area if its locus intersects the image at a pixel that lies on such an edge (Eigure 7). 

We implement this idea by Grst dcttaing the edges in the range image by using a standard technique, the 
GNC algorithm [6]. We chose this algorithm because it allows us to vary the sensitivity of the edge detector 
across the image, and because it perfom some smoothing of the image as a si& effect. When we apply the 
locus algorithm we can then record the fact that the locus of a given location intersects the image at an edge 
pixel. Such map locations arc grouped into regions that are the reported range shadows. Figure 8 shows an 
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Figure 11: Local featuns from a high resolution elev tlon m P 

elevatiou map. The Figure shows that while some features contspond merely to local extrema of the surface, 
some such as the edges of the deep gully arc characteristic featuns of the scene. This type of feature extraction 
plays an important role in S d o n  4 for combining multiple maps computed by the locus algorithm. 

4 COMBINING MULTIPLE TERRAIN MAPS 
We have so far addmsed the problem of building a representation of the environment from sensor data 
collected at one fixed locarion. In the case of mobile robots, however, we have to deal with a stream of 
images taken along the vehicle’s path. First of all, merging representations from successive viewpoints will 
produce a map with more information and better resolution than any of the individual maps. Another =son 
why merging maps increases the resolution of the resulting representation concerns the fact that the resolution 
of an elevation map is significantly better at close range. By merging maps, we can increase the resolution of 
the pans of the elevation map that were originally measured at a distance from the vehicle. 

The second motivation for merging maps is that the position of the vehicle at any given time is uncenain. 
Even when using expensive positioning systems, we have to assume that the robot’s idea of its position in 
the world will degrade in the course of a long mission. One way to solve this problem is to compute the 
position with respect to featurcs observed in the world instead of a fixed coordinate system [22,18]. That 
requirts the identification and fusion of common features between successive observations in order to estimate 
the displacement of the vehicle. 

In the tcnain matching problem, there axe two possible approaches: feature-based or iconic matching. In 
feature-based matching, we fyst have to extract two sets of fearurts (F:) and (F?) from the two views to be 
matched, and to find comspondenccs between features, (F,!&,F’) that arc globally consistent. We can then 
compute the displaccmcnt between the two views from the parameters of the features, and finally merge them 
into one common map. Although this is the standard approach to object recognition problems [5],  it has also 
been widely used for map matching for mobile robots [ 10,15,18,7,1J4]. In contrast, iconic approaches work 
directly on the two sets of data points, P’ and P by minimking a cost function of the form F(T(P2),P’) 

its minimum comsponds to a ”best” estimate of T in some sense. The minimization of F leads to an iterative 
gradient-like algorithm. Although ltss popular, iconic techniques have been successfully applied to incremental 
depth estimation j18.171 and map matching [239]. We &scribe in detail the feature-based and iconic stages 
in the next thrtc sections. 

v 

I where T(P2) is the set of points from view 2 trausformed by a displacement T. The cost is designed so that 
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Figure 7: Detecting range shadows 

overhead view of an elevation map computed by the locus algorithm, the white points are the shadow points, 
the gray level of the other points is pmportional to their uncertainty as computed in the pnvious Section. 

Figure 8: Shadow regions in an elevation map 

3.1.5 An application: footfall selection for the Ambler 

The purpose of using the locus algorithm for building terrain is to provide high resolution elevation data. As 
an example of an application in which such a resolution is needed, we briefly describe in this Section the 
problem of perception for a legged vehicle [16]. One of the main responsibilities of perception for a legged 
vehicle is to provide a terrain description that enables the system to detcrminc whether a given foot placement, 
orfoo@ZL is safe. In addition, we consider the case of locomotion on very rugged terrain such as the surface 
of Mars. 

> 

a3 



Figure 9: Footfall support area 

A foot is modeled by a flat disk of diameter 30 cms. The basic criterion for footfall selection is 
select a footfall area with the maximum support area which is defined as the contact area between the foot 
and the terrain as shown in Figure 9. Another constraint for footfall selection is that the amount of energy 
necessary to penetrate the ground in order to achieve sufficient support area milst be iiihimizcd. The energy 
is proportional to the depth of the foot in the ground. Tbc support arca is estimated by counting the number 
of map points within the circumfemct of the disk that arc above the plane of the foot. This is where the 
rcsolution ltquinment originates because the camputation of the support area makes sense only if the rtsolution 
of the map is significantly smaller than the diameter of the foot. Given a minimum allowed support ana, S,,,i,,, 
and the hi@ resolution terrain map, we can find the optimal footfall position within a given terrain area: Erst. 
we want to find possible flat areas by computing surface normals for each footfall area in a specified footfall 
selection area Footfalls with a high surface normal art eliminated. The surface normal analysis, however, 
will not be Sumcient for optimal footfall sclcaion. Sccond, the support area is computed for the remaining 
positions. The optimal footfall position is the one for which the maximum elevation, hop that realizes the 
minimum support area S- is the maximum acmss the set of possible footfall positions. Figure 10 shows a 
plot of the surface arca with rcspcct to the elevation frnn which h,,,,,, can be computed. 

- DistancetIaveledalong 
D verticaldirection 

Figure 10: Support area versus elevation 

3.1.6 Extracting lacal features from an elevation map 

The high rcsolution map enables us to extract very local features, such as points of high surface curvature. The 
local featurts that we extract arc based on the magnitude of the two principal curvatures of the terrain surface. 
The curvatures are computed as in [20] by first smoothing the map, and then computing the derivatives of the 
surface for solving the first fundamental form. Points of high C U N ~  cornspond to edges of the terrain, 
such as the edges of a valley, or to sharp terrain features such as hills, or holes. In any case, the high curnature 
points arc viewpoint-independent fcanucs that can be uscd for matching. We extract the high curnature points 
from both images of principal amatwe. We group the extracted points into ngions, then classify each region 
as point feature, line, or region, according to its Size, elongation, and m a t u n  distribution. Figure 11 shows 
the tbnc types of local features detected on the map of Figurc 8 superimposed in black over the original 



4.1 Feature-based matching 
Let F: and Ff be two sets of features extracted from two images, 11 and 12. We want to find a transformation 

and a set of pairs Ck = (Fi,F$) such that Fi = ?(Fi), where T(F) denotes the transformed by T of a feature 
F. The fcanrrts can be any of those discussed in the previous Sections: points or lines from the local feature 
extractor, obstacles xcpnscnted by a grwnd polygon, or tcrraiu patches represented by their surface equation 
and their polygonal boundaries. 

we obtain a set of possible matchings, each of which is a set of pairs s = (F;, Fi)k  between the two sets 
of features. Since we evaluated T simply by combining components in the course of the starch, we have to 
evaluate T for each S in order to get au accuratt estimate. T is estimated by minimizing an e m r  function of 
the form: 

L 

, 

k 

The distance 4.) used in Equation (4.8) depends on the type of the features involved. The matching S 
that realizes the minimum E is rtportcd as the final match between the two maps while the corresponding 
displacement t is reported as the bcst estimate of the displacement between the two maps. 

Feature-bad matching is applied to d a t e  the displacement for the iconic matching of high resolution 
maps. The primitives used for the matching arc the high curvature points and lines described in Section 3.1.6. 
The initial matches an based on the similarity of the ltngth of the lines and the similarity of the curvatun 
mngth  of the points. The search among candidate matches p d s  as described in Section 4.1. Since we 
have dense elevation at our disposal in this case, we can evaluate a candidate displacement over the entire 
map by summing up the squared differences between points in one map and points in the transformed map. 
Figure 12 shows the result of the fcaturc matching in a case in which the maps are stpanted by a very large 
displacement. The top image shows the superimposition of the contours and features of the two maps using 
the estimated displacement , while the bottom image shows the comspondences between the point and line 
fcaturts in the two maps. The lower map is transformed by T with rtsptct to the lower right map. The lower 
left display shows the area bat is common bttwtcn the two maps after the displacement. 

Figure 12: Matching maps using local features 
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4.2 Iconic matching from elevation maps 
The general idea of the iconic matching algorithm is to find the displacement T between two elevation maps 
from two different range images that minimim an e m r  function computed over the entire combined elevation 
map. The e m r  function E measures how well the first map and the transformed of the second map by T 
do agree. The easiest formulation for E is the sum of the 4 d  differences between the elevation at a 
location in the first map and the elevation at the same location computed from the second map using T. To 
be consistent with the tarlier formulation of tbc locus algorithm, the elevation at any point of the first map 
is actually the intcrscCticm of a line containing this point with the range image. We need some additional 
notations to formally define E R and r dcnow. the rotation and translation parts of T respectively, f;(u, v)  is 
the function that maps a line in space described by a point and a unit vcctor to a point in by the generalized 
ioais algorithm of Sdm 3.12 applied to image i. We have then: 

where g(u, v,T) is the intersection of the transformed of the line (u, v )  by T with image 2 exprtssed in the 
coordinate system of image 1 (Figure 13). The summation in Equation (4.9) is taken over all the locations 
(u, v )  in the first map where bothfl(u, v )  and g(u, v,  T )  arc dcfincd. The lines (u, v)  in the fim map arc parallel 
to the z-axis. In other words: 

g(u, v, T )  = 2-1(f2(uf, v')) = R'f(u', d )  + i (4.10) 

where T1 = (R',t) = (R-l,-J?-'t) is the inverse vansformation of T, and (d,v') = (Ru+ r,Rv) is the 
transformed of the l i e  (u,v). 'Ihis Equhon dcmwstratts one of the reasons why the locus algorithm is 
powerful: in order to compute f2(Ru + r,Rv) we can apply directly the locus algorithm. whertas we would 
have to do some interpolation or nsampling if we were using conventional grid-based techniques. We can also 
at this point fully justify the formulation of the generalized locus algorithm in Section 3.1.2: The transformed 
line (d ,  v') can be anywhere in space in the coordinate system of image 2, even though the original line (u, v )  
is parallel to the z-axis, necessitating the generalized locus algorithm to computef2(u', v'). 

line 

Figure 13: Principle of the iconic matching algorithm 

We now have to find the displacement T for which E is minimum. If u = [a, p, 7, r,, rr, rZ]' is the 6-vector of 
parameters of T, where the first three components 8 ~ t  the rotation angles and the last tbree art the components 
of the translation vector, then E reaches a minimum when: 
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Assuming an initial estimate To, such a minimum can be found by an iterative gradient descent of the 
form: 

(4.12) 

where vi is the & m a t e  of Y at iteration i. From Equation (4.9), the derivative of E can be computed by: it 

From Equation (4.10), we get the derivative of g: 

(4.13) 
? 

(4.14) 

The derivatives appearing in the last two components in Equation (4.14) are the derivatives of the trans- 
formation with respect to its parameters which can be computed analytically. The last step to compute the 
derivative of g(u, v,  r )  is therefore to compute the derivative of f7(u', v') with respect to u. We could write 
the derivative With rtspcct to tach component Vi of u by applyhg the chain d e  directly: 

(4.15) 

Equation (4.15) lcads however to instabilities in the gradient algorithm because, as we pointed out in 
Section 3.1.2, the (u,v) representation is an ambiguous rcprtStntation of lines in space. We need to use a 
non ambiguous rtprcsentation in order to correctly compute the derivative. Since we can use interchange- 
ably the (u,v) reprcsentation and the unambiguous (u,b,p,q) nprtStntation, we can c o m l y  compute the 
derivative [ 131. 

In the actual implementation of the matching algorithm, the points at which the elevation is computed 
in the first map are distxibuted on a square grid of ten centimeters resolution. The lines (u,v) are therefore 
vertical and pass through the centers of the grid cells. E is normalized by the number of points since the 
overlap region between the two maps is not known in advance. We first compute the fi(u, v) for the entirt 
grid for image 1, and then apply directly the gradient descent algorithm described above. The iterations stop 
either when the variation of error dE is small enough, or when E itself is small enough. Since the matching 
is computationally expensive, we compute E over an eight by eight meter window in the first image. The last 
test ensures that we do not keep iterating if the error is smaller than what can be rtasonably achieved given 
the CbaraCteriStics of the ScIISor. Figure 14 shows the rtsult of combining thrtt high resolution elevation maps. 
The displacements between maps are computed using the iconic matching algorithm. The maps arc actually 
combined by replacing the elevation fi(u, v) by the combination: 

4 1  + ad2 (4.16) 

where u1 and a2 are the uncertainty values. The rtsulting mean emr in elevation is lower than ten centimeters. 
We computed the initial TO by using the local feature marching of Section 4.1. This estimate is sufficient to 

ensure the convergence to the true value. This is important because the gradient descent algorithm converges 
towards a local minimum, and it is therefore important to show that TO is close to the minimum. Table 1 
shows the converged and initial values of the Vi's by the iterative matching algorithm for matching two 
maps separated by a very large displacement as shown in Figure 12. In this experiment, the initial estimate is 
obtained by feature-based matching method described in Section 4.1 and the gradient descent algorithm needed 
approximately 30 iterations to converge to the minimum. Since the ground truth cannot be obtained, we do 
not know the absolute accuracy of those motion parameters. However, from the fact that the elevation RMS 
emf is about 6 cm, the iconic matching method combined with feature-based matching is very satisfactory 
for our application in rugged terrain. 

0 1  + 02  

? 
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r? 

Tran~lat i~n (a) 
Rotation (degree) 

RMS E m r  (cm/pixel) 

Table 1: Results for computing motion parameters 

I Initial values Converged values 
(-108.9, -125.0, 0.0) (-191.26, -119.265, -19.56 
(0.0, 0.0, 29.5917) (1.93, -0.51566, 31.114) 

81.03 5.92 

5 CONCLUSION 
In this paper, we have introduced a new method (Locur) to convert range images to elevation maps. This 
method is used to develop an uncertainty model and an algorithm for representing vertical objects in elevation 
maps. We have demons& the applicability of elevation maps to the footfall selection of a legged vehicle. 
An iterative iconic matching technique without assuming any comspondence or smooth surface assumptions 
is developed to compute the optimal motion. This motion tstimate is then used to obtain a composite terrain 
map by merging multiple range images. We have demonstrated these algorithms on real range images of 
outdoor scents. The results suggest that elevation maps arc in general an appropriate terrain representation 
and our iconic matching method is useful for rugged terrain environments. 

Many issues still main to be investigated. First of all, we must define a uniform way of representing 
and combining the uncertaintics in the terrain maps. Cumntly, the uncertainty models depend heavily on 
the type of sensor wed and 011 the level at which the terrain is represented. Furthermore, the displacements 
between ttrrain maps art known only up to a certain level of uncertainty. This level of uncertainty must be 
evaluated and updated through the matching of maps, whether iconic or feature-based. We have tackled the 
temh representation problems mainly from a gtomemcal point of view. 

A natural extension of this work is to use the 3-D terrain xeprtSentations to identify known objects in the 
scene. Another application along these lines is to use the terrain maps to identify objects of interest, such as 
terrain regions for sampling tasks for a planetary explorer [la]. Although we have performed some preliminary 
experiments in that [ 11,2], extracting semantic information from terrain representations remains a major 
research area for outdoor mobile robots. 

t 
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